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Summary. The pricing of discretely monitored barrier options is a difficult prob-
lem. In general, there is no known closed form solution for pricing such options. A
path integral approach to the evaluation of barrier options is developed. This leads
to a backward recursion functional equation linking the pricing functions at suc-
cessive barrier points. This functional equation is solved by expanding the pricing
functions in Fourier-Hermite series . The backward recursion functional equation
then becomes the backward recurrence relation for the coefficients in the Fourier-
Hermite expansion of the pricing functions. A very efficient and accurate method
for generating the pricing function at any barrier point is thus obtained.

A number of numerical experiments with the method in order to gain some un-
derstanding of the nature of convergence. Results are performed for various volatility
values and different numbers of basis functions in the Fourier-Hermite expansion are
presented. Comparisons are given between pricing of discrete barrier option in the
path integral framework and by use of finite difference methods.
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1 Introduction

Barrier options are derivative securities with values contingent on the rela-
tionship between the value of the underlying asset and one or more barrier
levels. In this paper we consider the pricing of barrier options which are mon-
itored at particular points over the life of the contract, also known as discrete
barrier options. These types of exotic options have become a prominent fea-
ture of modern financial markets with many variations heavily traded in the
foreign exchange, equity and fixed income markets. The emergence of such
securities has also provided challenging research problems in the area of ef-
ficient pricing and hedging of such securities. Most pricing models (Merton
(1973), Rubinstein and Reiner (1991), Heynen and Kat (1996)) consider bar-
rier options whose barrier level is continuously monitored at every instant in
time over the life of the option, allowing the derivation of closed form solu-
tions. However most traded barrier options are monitored discretely, rather
than on a continuous basis. The application of the solutions derived assuming
continuous monitoring to the pricing of discretely monitored barrier options
results in substantial pricing errors (Chance (1994), Kat (1995) and Levy and
Mantion (1997)). Hence the need for a method to accurately and efficiently
evaluate discretely monitored barrier options. Traditional lattice and Monte
Carlo methods have difficulties in incorporating discrete monitoring princi-
pally because of the misalignment of the monitoring points.

Several papers have appeared in the literature proposing various methods
to handle discrete monitoring. Variations to the traditional binomial and tri-
nomial methods were proposed by Figlewski and Gao (1997), Tian (1996) and
Boyle and Tian (1997). These include Broadie, Glasserman and Kou (1997a)
who propose a method based on the price of a continuous barrier options with
a continuity correction for discrete monitoring. Broadie, Glasserman and Kou
(1997b) incorporate the correction term in developing a lattice method for de-
termining accurate prices of discrete and continuous path-dependent options.
As far as the pricing of discretely monitored barrier options is concerned Wei
(1998) proposes an interpolation method whereas Sullivan (2000) proposes a
method that reduces the discrete time multidimensional integration required
to a sequential numerical integration.

In this paper we examine a potentially powerful alternative to existing
pricing methods. Using knowledge of the conditional transition density func-
tion we repeatedly apply the Chapman-Kolmogorov equation to relate the
pricing function at successive monitoring points. We then expand the pricing
function in a Fourier-Hermite series in terms of the price of the underlying
asset. We derive recurrence relations involving orthogonal polynomials under
a given measure. The proposed method works well for various discrete barrier
structures including, single and double barriers, constant and time varying
barrier levels and for a number of payoff structures such as vanillas, digi-
tal and powers. The method can be made arbitrarily accurate by taking a
sufficient number of terms in the expansion.
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The techniques used extend the work of Chiarella, El-Hassan and Kucera
(1999) where Fourier-Hermite series expansions were applied to the valuation
of European and American options. The novel aspect of our contribution is
the expansion of the derivative security price at each time step in a Fourier-
Hermite series expansion so that it is obtained as a continuous and differen-
tiable function of the price of the underlying asset. The actual implementation
of our method then becomes a question of determining the coefficients of the
Fourier-Hermite series expansion at each time step. Using the orthogonalisa-
tion condition, it turns out that these can be generated recursively by working
backwards from one time step to the next, by use of the recurrence relations
which generate the Hermite polynomials. The implementation of these recur-
rence relations is in fact very efficient. Here we apply the method to pricing
discretely monitored barrier options. Since we obtain a continuous and dif-
ferentiable representation of the price, the hedge ratios delta and gamma can
be obtained to a high level of accuracy and also very cheaply in terms of
calculation time.

Our approach may be regarded as one way to implement the path integral
techniques in option pricing problems. In recent years it has become appreci-
ated that the path integral technique of statistical physics can be applied to
derivative security valuation. We refer in particular to Linetsky (1997) who
provides an overview of the path integral concept and its application to finan-
cial problems. The wide application of path integral techniques to financial
modelling and in particular to the pricing and hedging of options, including
path-dependent and exotic options, was first studied by Dash (1988). Dash’s
contribution to the area was largely in the formulation of many derivative
security pricing problems in the path integral framework, including standard
equity options, exotic options, path dependent options and the pricing of bond
options under a number of popular term structure models. The framework
provides an intuitive description of the value of derivative securities using
relatively simple mathematics.

However, the application and implementation of solution techniques of
path integrals to finance problems has been limited, with the cited authors
focusing on a general framework and pointing to the potential for the appli-
cation of these techniques to financial pricing problems. Path integrals can be
evaluated in a number of ways including analytic approximations by means
of moment expansions in a perturbation series, deterministic discretisation
schemes of the path integral and Monte-Carlo simulation (Makici (1995))
methods. The method chosen will in general depend on the problem at hand
and the stability of the solution technique used. We also refer to the contribu-
tion of Eydeland (1994) who provides a computational algorithm based on a
Toeplitz matrix structure and fast Fourier transforms for evaluating financial
securities in a path integral framework. This technique was successfully ap-
plied by Chiarella and El-Hassan (1997) to evaluate European and American
bond options in an HJM framework.
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The organisation of the paper is as follows: In section 2, we define the gen-
eral barrier structure and outline the backward recursion procedure. In section
3, we show how the path integral formulation for the value of a discretely mon-
itored barrier defined in section 2 can be represented as an expansion of the
value function in a series of orthogonal polynomials and reduced to a back-
ward recursion procedure. In section 4, we report some numerical results and
in section 5 we make some concluding remarks.

2 The General Barrier Structure

We denote the underlying asset price by S and assume that under the risk-
neutral measure it follows a geometric Brownian motion given by

dS = (r − q)Sdt + σSdW,

where σ is the volatility, r is the risk-free rate of interest, q is the continuous
dividend yield on the underlying asset and W (t) is a standard Wiener process.
By allowing for a continuous dividend yield q our framework may be applied
to barrier options on indices, or to options on foreign exchange by setting
q = rf where rf is the risk free rate of interest in the foreign economy.

The implementation of the path integral method described below follows
the framework laid out in Chiarella et al. (1999), which requires expansion
of pricing functions in terms of Hermite polynomials. These are defined on
an infinite interval, for this reason we need to transform the asset price to
a variable defined on an infinite interval. This is most conveniently done by
introducing the change of variable

ξ =
1

σ
ln(S). (1)

A straight forward application of Ito’s lemma reveals that ξ satisfies the
stochastic differential equation

dξ =
1

σ

(

(r − q) − 1

2
σ2

)

dt + dW (t). (2)

We recall that (2) implies that the transition probability density for ξ
between two times t′, t(t′ < t), denoted π (ξt, t|ξt′ , t

′) is normally distributed
and is in fact given by

π (ξt, t|ξt′ , t
′) =

1
√

2π(t − t′)
exp







−
[

ξt −
√

2(t − t′)µ(ξt′ , t − t′)
]2

2(t − t′)






, (3)

where it is convenient to define
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µ(ξ, t) =
1√
2t

(

ξ +
1

σ

(

r − q − 1

2
σ2

)

t

)

. (4)

We divide the time interval from initial time to option maturity into K
subintervals (tk−1, tk), (k = 0, 1, · · · , K). The spacings between the barrier
observation points, tk, need not be constant. We set ∆tk = tk − tk−1 for
k = K, · · · , 1 with the implied notation that t0 = 0 and tK = T so that
T =

∑K
k=1 ∆tk.

We allow for barrier levels that can be time dependent. Thus at each time
tk there will be an upper barrier level, bk

u, and a lower barrier level bk
l , for

k = K − 1, · · · 1 Here we note that we do not include barriers at expiry since
they are part of the pay-off definition. With this notation we may handle the
case of no lower barrier by setting bk

l = 0, and the case of no upper barrier by
letting bk

u → ∞. Figure 1 illustrates in the S, t plane a typical discretisation
with a variety of possible barriers at the discretisation points.

6S

X

- t
t0 t1 tk−1 tk tK−1 tK

q

q

q q

q

q

q

q

q

q

� -∆tk

Fig. 1. The Discretisation Scheme
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3 THE BARRIER OPTION AS A functional recurrence

relation EQUATION

Under the risk neutral measure the price of a derivative security at any point
in time is the discounted expected payoff at the next point at which it may
be exercised. The transition probability density function (3) is the one that
is required to calculate the expected payoff. We use F k(ξk) to denote the
value function of the barrier option at monitoring point tk as a function of
ξk, the volatility scaled log price. Then the discounted expected value relation
between the value functions at two successive monitoring points tk−1, tk is
given by

F k−1
(

ξk−1
)

= e−r∆tk

∫ ln(bk
n)/σ

ln(bk
l
)/σ

π(ξk, tk|ξk−1, tk−1)F k(ξk)dξk. (5)

Substituting equation (3) and making a change of integration variable we
obtain

F k−1(ξk−1) =
e−r∆tk

√
π

∫ zk
u

zk
l

e−(ξk−µ(ξk−1,∆tk))2F k(
√

2∆tkξk)dξk, (6)

where, due to the the scaling factor
√

2∆tk in F k, the limits of integration zk
l

and zk
u are given by

zk
l =

ln(bk
l )

σ
√

2∆tk
and zk

u =
ln(bk

u)

σ
√

2∆tk
, (7)

for k = K−1 · · · , 1. Thus the notation implicitly carries the time dependance
of the problem. With the above notation, equation (6) can be written as

F k−1(ξk−1) =
e−r∆tk

√
π

∫ zk
u

zk
l

e−(ξk−µ(ξk−1,∆tk))2F k(
√

2∆tkξk)dξk, (8)

Equation 8 is the functional recurrence equation that we need to solve. We
note that in stepping back the range of integration, from t = tk to t = tk−1

(i.e. propagating back the solution) is given by 0 ≤ ξk ≤ ∞ for a call option
and for a put option by -∞ < ξk ≤ 0. In this way, the max function is handled
by the integration limits. For ease of clarity and notation, when performing
the path integrations across all the time intervals, we will denote ξk as x, ξk−1

as ξ, zk
l as zl, zk

u as zu, ∆tk as ∆t.
With the above notation, equation (1.7) can be written as

F k−1(ξ) = e−r∆t 1√
π

∫ zu

zl

e−(x−µ(ξ,∆t))2F k(
√

2∆tx)dx, k = K, ..., 1.

(9)
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Figure 2 illustrates the region of integration and the concept of the back-
ward propogation of the price function. The task at hand involves successive
iteration of equation (9) from the given pay-off function, F k(ξk) through the
barrier points back to t = 0. On completing the iterations, it is a simple mat-
ter to invert the log transformation and return to the price variable S and
evaluate F 0 at the required spot value.

Because of our geometric Brownian motion assumption for the underlying
asset price the option pricing function is homogeneous in S

X . Hence for a call
option we need only consider a pay-off function of the form max(S−1, 0) and
a put option a pay-off function max(1 − S, 0). Under the log transformation

the pay-off for a call option becomes max[0, eσk

ξk − 1]. Similarly the pay-off

function for a put option is max[0, 1 − eσk

ξk − 1]. We use FK(ξK) to denote
the payoff function at the final time tK .

•

•

•

•

zu

zl

ξ x

tk−1 tk
t

F k−1(ξ) F k(
√

2∆tx)

↑ ↑

Fig. 2. Propagating the Price Function Back from t
k to t

k−1
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4 The Fourier-Hermite series Expansion

The basic problem in implementing 9 is to obtain a convenient way to evaluate
the integral on the right-hand side and to then build up successively the value
functions F k(ξ) (k = K − 1, · · · , 1). In this paper we solve this problem by
expanding both F k(x) and F k−1(ξ) in Fourier-Hermite series . Thus we set

F k(x) ≈
N
∑

n=0

αk
nHn(x),

and

F k−1(ξ) ≈
N
∑

m=0

αk−1
m Hm(ξ),



































(10)

for N sufficiently large to ensure convergence of the series. By substituting
the Fourier-Hermite expansions (10) into the backward recurrence 9 and mak-
ing use of the orthogonality property of Hermite polynomials, it is possible to
obtain a backward recurrence relation for the coefficients in the expansions
(10). In this way, we are able to construct the value functions F k(ξ). We state
this key result in proposition I, but before stating this proposition it is useful
to introduce some special notation for quantities which occur frequently in
the calculations below.

Notation3

First introduce the functions

Lm(x) =
Hm(x)

2mm!vm
, (11)

which are easily shown to satisfy the recurrence equation

Lm(x) =
xLm−1(x)

mv
− Lm−2(x)

2(m − 1)v2
, (12)

with L0(x) = 1 and L1(x) = x/v.

Next we set (recall φ(x) := e−x2/2/
√

2π)

Rm,n(x) =
√

2Lm(x)Hn(vx + β)φ(
√

2x), (13)

from which we define

Qm,n(x, y) = Rm,n(x) − Rm,n(y). (14)

Finally we define

P (x, y) = Φ(
√

2x) − Φ(
√

2y), (15)

3 See Appendix H for a summary of the notation.
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where

Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du,

is the cumulative normal density function.

Proposition I

The known coefficients αk
n and the to be calculated coefficients αk−1

m at the

time tk−1 are connected by the recurrence relation

αk−1
m = e−r∆t

N
∑

n=0

ak
m,nαk

n, for k = K, · · · , 1 (16)

or in matrix notation:

α
k−1 = e−r∆tAk

α
k, for k = K, · · · , 1 (17)

where

Ak = [ak
m,n] for m = 0, 1, · · · , N and n = 0, 1, · · · , N (18)

The coefficients ak
m,n are generated by the equations outlined in the proof

below.

Proof. Substituting the two series expansions (10) into the functional equation
9, using the orthogonality properties of the Hermite polynomials we find after
some algebraic manipulations that

αk−1
m = e−r∆t

N
∑

n=0

n

2mm!

αk
n√
π

∫ zu

zl

Hn(
√

2∆t x)Im(x)dx, (19)

where

Im(x) =

√
2∆t

vm+1
Hm

(√
2∆t x − β

v

)

exp



−
(√

2∆tx − β

v

)2


 , (20)

with

v =
√

1 + 2∆t and β =
1

σ

(

r − q − 1

2
σ2

)

∆t. (21)

Now, introducing the transformation

z =

√
2∆tx − β

v
, (22)

equation (19) can be written as

αk−1
m = e−r∆t

N
∑

n=0

ak
m,nαk

n, (23)
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where the elements ak
m,n are given by

ak
m,n =

1

2mm!vm

1√
π

∫ xu

xl

e−x2

Hm(x)Hn(vx + β)dx. (24)

The new limits of integration xl and xu are given by

xl =

√
2∆tzl − β

v
and xu =

√
2∆tzu − β

v
. (25)

We note that at final time tK for a call, the integration limits become

xl = 0 and xu → ∞, (26)

whilst for a put, when k = K,

xl → −∞ and xu = 0. (27)

At final time tK , it is convenient to define w such that w = 1(−1) applies
to a Call(Put).

Thus taking into consideration the foregoing limits the first four elements
are given by

aK
0,0 =

w√
π

∫ w∞

0

e−x2

dx =
1

2

aK
0,1 =

w√
π

∫ w∞

0

e−x2

2(vx + β)dx =
w

2
√

π
+ β

aK
1,0 =

w√
π

∫ w∞

0

e−x2

2xdx =
w

2v
√

π

aK
1,1 =

w√
π

∫ w∞

0

e−x2

(2x)2(vx + β)dx =
1

2
+

wβ

v
√

π
. (28)

For m = 2, 3, · · · , N with n = 0

aK
m,0 =

w

2mm!vm
√

π

∫ w∞

0

e−x2

Hm(x)dx =
w

2mv
√

π
Lm−1(0). (29)

For n = 2, 3, · · · , N with m = 0

aK
0,n =

w√
π

∫ w∞

0

e−x2

Hn(vx + β)dx, (30)

which upon use of the recurrence equation for Hermite polynomials yields the
recurrence equation

aK
0,n =

wv√
π

Hn−1(β) + 2βaK
0,n−1 + 2(v2 − 1)(n − 1)a0,n−2. (31)
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For m = 2, 3, · · · , N and n = 2, 3, · · · , N application of the recurrence
equation for Hermite polynomials yields

aK
m,n =

w
√

2

2mv
√

π
Lm−1(0)Hn(β) +

n

m
aK

n−1,m−1. (32)

Next we consider generation of the coefficients ak
m,n at any general time

step k.
Using the definitions of P and Q from (14) and (15), then the first four

elements are given by

ak
0,0 =

1√
π

∫ xu

xl

e−x2

dx = P (xu, xl), ( see appendix A)

ak
1,0 =

1

2v
√

π

∫ xu

xl

e−x2

2xdx =
1

2v
Q0,0(xl, xu), ( see appendix B)

ak
0,1 =

1√
π

∫ xu

xl

e−x2

2(vx + β)dx = vQ0,0(xl, xu) + 2βP (xu, xl), (see appendix C)

ak
1,1 =

1

2v
√

π

∫ xu

xl

e−x2

(2x)2(vx + β)dx =
1

2v
Q0,1(xl, xu) + P (xu, xl). ( see appendix D)

To alleviate the notation we shall henceforth set

P = P (xu, xl) and Qm,n = Qm,n(xl, xu).

For m = 2, 3, · · · , N with n = 0 (see appendix E)

ak
m,0 =

1

2mv
Qm−1,0. (33)

For n = 2, 3, · · · , N with m = 0 (see appendix F)

ak
0,n = vQ0,n−1 + 2βak

0,n−1 + 2(v2 − 1)(n − 1)ak
0,n−2. (34)

For m = 2, 3, · · · , N and n = 2, 3, · · · , N (see appendix G)

ak
m,n =

1

2mv
Qm−1,n +

n

m
ak

m−1,n−1. (35)

Alternatively, if we introduce a new function

Zm,n =
1

2(m + 1)v
Qm,n(xl, xu), (36)

then the first four elements are given by

ak
0,0 = P ak

0,1 = 2v2Z0,0 + 2βP,

ak
1,0 = Z0,0 ak

1,1 = Z0,1 + P.
(37)
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For m = 2, 3, · · · , N and n = 0

ak
m,0 = Zm−1,0. (38)

For n = 2, 3, · · · , N and m = 0

ak
0,n = 2v2Z0,n−1 + 2βak

0,n−1 + 2(v2 − 1)(n − 1)ak
0,n−2. (39)

For m = 2, 3, · · · , N and n = 2, 3, · · · , N

ak
m,n = Zm−1,n +

n

m
ak

m−1,n−1. (40)

All of the elements of the matrix A of the proposition are now defined.

Proposition I has specified the coefficients of the matrix A which determine
the backward transition of the α

k coefficients from final time back to initial
time. The quantity that we need to initialise the entire backward propogation
process is α

K , the set of α coefficients at final time. These are determined by
the payoff function at final time. In fact they are computed by expanding the
payoff function itself in a Fourier-Hermite series .

Recalling the payoff functions for calls and puts (see Figure 2) and the
notation w = 1(−1) to indicate call (put) the backward recursion from final
payoff at tk to the time step tK−1 may be written

FK−1(ξ) =
e−r∆t

√
π

∫ zu

zl

e−(x−µ(ξ,∆t))2w(eσx − 1)dx. (41)

In the case of a call zu = ∞ and zl = 0. In the case of a put zu = 0
and zl = −∞. we note however that the notation employed for the limits of
integration in (41) also allows us to cater for the situation when there are
discrete barriers at final time. In this case zu and zl would be determined by
the barrier points.

Thus in order to calculate the coefficients αK
n we first need to expand eσx

in a Fourier-Hermite series .
First we note the result that

1√
π

∫ ∞

−∞
e−x2

Hn(x)eσxdx = σne
σ2

4 . (42)

Then forming the Fourier-Hermite series

eσx =

∞
∑

n=0

βnHn(x), (43)

we apply the orthogonality condition to obtain

βn =
1

2nn!

1√
π

∫ ∞

−∞
e−x2

Hn(x)eσxdx, (44)
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which by use of (41) reduces to

βn =
σn

2nn!
e

σ2

4 . (45)

Therefore, for a call,

αK
n = βn for n = 1, 2, · · · , N (46)

and αK
0 = eσ2 − 1.

While for a Put,

αK
n = −βn for n = 1, 2, · · · , N (47)

and αK
0 = 1 − eσ2

.

5 Results

In this section we present some preliminary results obtained from implement-
ing the path integral framework for pricing discretely monitored barrier op-
tions. The method was tested for parameter values similar to those used by
Broadie et al. (1997a) and Wei (1998). The method was also tested on barrier
puts and calls with digital type payoff functions. To ascertain the accuracy
of the method, a Crank-Nicholson was used to generate true prices for the
options investigated.4 Hence, the Crank-Nicholson scheme was used with very
fine discretisations, with the stock price variable taken out to five times the
value of the strike (scaled to unity) with 2000 steps per unit. The time variable
was discretised to 100 steps per day.

 Path Integral 
m=40 

Path Integral 
m=100 

CN 

σ = 0.60 9.4895 9.4904 9.4905 
σ = 0.40 7.0388 7.0393 7.0394 
σ = 0.20 4.4336 4.4342 4.4344 

 

TABLE 1. Discretely Monitored Down-and-Out Call Option 

Parameters: S = K = 100, T = 0.2 year, r = 0.1, 

q = 0, barrier = 95, monitoring frequency = 4. 

4 Our implementation of the Crank-Nicholson scheme for discrete barrier options
follows the approach outlined in Tavella (2002).
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Table 1 gives results of the path integral method for a set of parameter
values which differ in their volatility value. The results are presented using 40
and 100 basis functions and are compete with the Crank-Nicholson (CN) true
solution using the high order discretisation mentioned earlier. It is evident that
even with 40 basis functions the method is relatively accurate when compared
with the true values, with the results approaching the true values when using
100 basis functions. Note that the parameter values used in this test include
high volatility as well as the barrier level close to the current asset price which
typically present problems in other pricing methods for discretely monitored
barrier options.

 Percentage Pricing Error 
Barrier  
Level 

Path Integral  
Solution 

CN 
Solution 

Path 
Integral 

BGK 
Correction 

Monthly Monitoring 
85 
90 
95 

99.5 
99.9 

8.1859 
7.8406 
6.7450 
4.9323 
4.7460 

8.1861 
7.8403 
6.7463 
4.9338 
4.7474 

-0.003% 
 0.004% 
-0.019% 
-0.031% 
-0.030% 

-0.011% 
-0.008% 
 0.036% 

-10.926% 
-16.023% 

Weekly Monitoring 
85 
90 
95 

99.5 
99.9 

8.1248 
7.5761 
5.8936 
3.0078 
2.7599 

8.1250 
7.5763 
5.8946 
3.0093 
2.7354 

-0.003% 
-0.003% 
-0.016% 
-0.050% 
 0.895% 

 0.006% 
 0.080% 
-0.870% 
-13.570% 
-16.527% 

 

TABLE 2. At-the-money Down and Out Call Options 

Parameters: S = K = 100, T = 0.5 year, r = 0.05, 

q = 0, σ = 0.25, 100 basis function 

Table 2, table 3 and table 4 show results of the method for at-the-money,
out-of-the-money and in-the-money down-and-out options under two monitor-
ing frequencies - monthly and weekly. Results are presented for various barrier
levels including values approaching the current asset values. Also presented
are percentage-pricing errors relative to the true prices obtained using the
Crank-Nicholson method. These give the percentage error of the option prices
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 Percentage Pricing Error 
Barrier  
Level 

Path Integral  
Solution 

CN 
Solution 

Path 
Integral 

BGK 
Correction 

Monthly Monitoring 
85 
90 
95 

99.5 
99.9 

10.8029 
9.8831 
7.4328 
3.6611 
3.3172 

10.8052 
9.8865 
7.4381 
3.6623 
3.3181 

-0.022% 
-0.035% 
-0.071% 
-0.034% 
-0.027% 

-0.010% 
-0.007% 
 0.043% 

-11.061% 
-16.160% 

Weekly Monitoring 
85 
90 
95 

99.5 
99.9 

10.9187 
10.3118 
8.6362 
6.1197 
5.8716 

10.921 
10.3139 
8.6381 
6.1213 
5.8732 

-0.021% 
-0.021% 
-0.022% 
-0.027% 
-0.027% 

0.009% 
0.088% 
-0.970% 

-14.001% 
-16.960% 

 

TABLE 3. In-the-money Down and Out Call Option 

Parameters: S =100, K = 105, T = 0.5 year, r = 0.05, 

q = 0, σ = 0.25, 100 basis functions. 

 Percentage Pricing Error 
Barrier  
Level 

Path Integral  
Solution 

CN 
Solution 

Path 
Integral 

BGK 
Correction 

Monthly Monitoring 
85 
90 
95 

99.5 
99.9 

5.9226 
5.6068 
4.4945 
2.3851 
2.1751 

5.9237 
5.6081 
4.4979 
2.3847 
2.1751 

-0.018% 
-0.022% 
-0.075% 
 0.018% 
 0.001% 

-0.014% 
-0.005% 
 0.058% 

-10.882% 
-15.962% 

Weekly Monitoring 
85 
90 
95 

99.5 
99.9 

5.9545 
5.7630 
5.0803 
3.8346 
3.7011 

5.9548 
5.7642 
4.0814 
3.8356 
3.7021 

-0.005% 
-0.021% 
-0.022% 
-0.026% 
-0.026% 

 0.000% 
 0.080% 
-0.825% 

-13.343% 
-16.258% 

 
TABLE 4. Out-of-the-money Down and Out Call Options 

 
Parameters: S =100, K = 95, T = 0.5 year, r = 0.05, 

q = 0, σ = 0.25, 100 basis functions. 

calculated using the path integral method relative to the true value. Following
Wei (1998), we also give the percentage errors of prices calculated using the
Broadie-Glasserman-Kou (BGK) continuity correction Broadie et al. (1997a).
Comparing the percentage errors of the prices derived under the path integral
method with those derived under the BGK methods, show that relative errors
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are of comparable magnitude when the barrier level lies away from the current
asset price. However, as the barrier level approaches the current asset price,
the relative errors producing using the path integral method are much smaller
than those using the BGK method. Also, the size of the relative error under
the path integral method is relatively stable across barrier levels.

Although not reported in this version of the paper, the computation time
required for the path integral method is one of its strengths. For a 1-year-
down-and-out barrier option with weekly monitoring, with 100 basis func-
tions, the algorithm in its current form runs about three times faster than
the Crank-Nicholson method to give the same level of accuracy. Of course the
computation times for the path integral method increase with the number of
basis functions and with the monitoring frequency. However we should point
out that the computer codes for both the Hermite expansion method and the
Crank-Nicholson method have not been optimised as much as they could be.
We leave to future research the task of doing a thorough comparison of the
relative efficiency of these and other methods.

6 Conclusion

In this paper we have presented a pricing method for the valuation of dis-
cretely monitored barrier options in a path integral framework. We show how
the backward recursion algorithm of such derivative securities in this frame-
work may be efficiently evaluated by expanding the price in a Fourier-Hermite
series as a function of the underlying asset price. The method has the advan-
tage of giving the price as a continuous function of the underlying asset price,
hence the hedge ratios can be calculated to a high degree of accuracy with
minimal additional computational effort. The method can handle various bar-
rier structures with constant and time varying barrier levels for a variety of
option payoffs. The method can be made arbitrarily accurate by increasing the
number of basis functionsn in the expansions. Preliminary numerical results
show that the method presented is relatively accurate and efficient.

There are several paths for future research. First, it would be of interest
to calculate the deltas and delta hedging costs an option in this framework.
Second, the approach here could be compound for speed and accuracy with
the recent approach of Fusai, Abrahams and Sgarra (2006)5 which solves nu-
merically a Wiener-hopf equation. Third, a natural and simple extension of
the work presented in this article would be to apply this method to discretely
monitored lookback and Parisian options. American versions of these options
could also be conveniently handled in this framework.

5 We are grateful to a referee for drawing this paper to our attention.



A The coefficient a
k
0,0 17

Appendix

A The coefficient a
k
0,0

By definition,

ak
0,0 =

1√
π

∫ xu

xl

e−x2

dx, (48)

which by change of variable becomes

ak
0,0 =

1√
2π

∫

√
2xu

√
2xl

e−z2/2dz,

=
1√
2π

∫

√
2xu

−∞
e−z2/2dz − 1√

2π

∫

√
2xl

−∞
e−z2/2dz. (49)

This can be expressed as

aK
0,0 = Φ(

√
2xu) − Φ(

√
2xl), (50)

or using the notation as given by equation (15) we have that

ak
0,0 = P (xu, xl). (51)

It is worth noting some some special values for this coefficient

At the pay-off, k = K we have in the case of a call that xl = 0 and xu → ∞
so that

ak
0,0 = P (0,∞) =

1

2
. (52)

In the case of a put,we have that xl → −∞ and xu = 0 so that

ak
0,0 = P (−∞, 0) =

1

2
. (53)

Consider the general time step, k = (K − 1, · · · , 1), there are two special
cases:

If we have only an upper barrier, then xl → −∞ and

ak
0,0 = P (−∞, xu) = Φ(

√
2xu). (54)

If we have only a lower barrier, then xu → ∞ and

ak
0,0 = P (xl,∞) = 1 − Φ(

√
2xl). (55)
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B The coefficient a
k
1,0

By definition,

ak
1,0 =

1

2v

1√
π

∫ xu

xl

2xe−x2

dx (56)

which easily evaluates to

ak
1,0 =

1

2v

√
2

[

1√
2π

e−(
√

2xl)
2/2 − 1√

2π
e−(

√
2xu)2/2

]

, (57)

which upon use of the notation φ(x) = e−x2/2/
√

2π, becomes

ak
1,0 =

1

2v

[

φ(
√

2xl) − φ(
√

2xu)
]

. (58)

Using the notation of equation (14) we can also write

ak
1,0 =

1

2v
Q0,0(xl, xu). (59)

We note some special values.

At the pay-off, k = K we have in the case of a call that xl = 0 and xu → ∞,
then

aK
1,0 = Q0,0(0,∞) =

1

2v
√

π
(60)

In the case of a put, xl → −∞ and xu = 0. then,

ak
1,0 = Q0,0(−∞, 0) =

−1

2v
√

π
. (61)

Here we see that the difference between the two cases is a simple sign
change, that is

ak
1,0(Call) = −aK

1,0(Put). (62)

At the general time step k, there are two special cases of interest:-
If we have only an upper barrier so that xl → −∞ then

ak
1,0 =

1

2v
Q0,0(−∞, xu),

=
1

2v
[R0,0(−∞) − R0,0(xu)] ,

=
−
√

2

2v
φ(
√

2xu). (63)

If we have only a lower barrier so that xu → ∞ then
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ak
1,0 =

1

2v
Q0,0(xl,∞),

=
1

2v
[R0,0(xl) − R0,0(∞)] ,

=

√
2

2v
φ(
√

2xl). (64)

C The coefficient a
k
0,1

By definition

ak
0,1 =

1√
π

∫ xu

xl

e−x2

2(vx + β)dx, (65)

which can be written
ak
0,1 = vI1 + 2βI2, (66)

where

I1 =
1√
π

∫ xu

xl

2xe−x2

dx, I2 =
1√
π

∫ xu

xl

e−x2

dx. (67)

Using results from Appendices A and B, we find that

I1 =
√

2
[

φ(
√

2xl) − φ(
√

2xu)
]

,

I2 =
[

Φ(
√

2xu) − Φ(
√

2xl)
]

. (68)

Hence on using equation (14) and (15)

ak
0,1 = vQ0,0(xl, xu) + 2βP (xu, xl). (69)

We consider some special values. At the pay-off, k = K. In the case of a
call we have xl = 0 and xu → ∞ so that

ak
0,1 = vQ0,0(0,∞) + 2bP (0,∞) =

1

2v
√

π
+ β. (70)

In the case of a put we have xl → −∞ and xu = 0 so that

aK
0,1 = vQ0,0(−∞, 0) + 2βP (−∞, 0) =

−1

2v
√

π
+ β. (71)

At the general time step k, there are two special cases of interest.
The case of only an upper barrier (xl → −∞) so that
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ak
0,1 = vQ0,0(−∞, xu) + 2βP (−∞, xu),

= v [R0,0(−∞) − R0,0(xu)] + 2βP (−∞, xu),

= −v
√

2φ(
√

2xu) + 2bΦ(
√

2xu). (72)

In the case of only a lower barrier (xu → ∞) we have

ak
0,1 = vQ0,0(xl,∞) + 2βP (xl,∞),

= v [R0,0(xl) − R0,0(∞)] + 2βP (xl,∞),

= v
√

2φ(
√

2xl) + 2β
[

1 − Φ(
√

2xl)
]

. (73)

D The coefficient a
k
1,1

By definition

ak
1,1 =

1

2v
√

π

∫ xu

xl

e−x2

(2x)2(vx + β)dx, (74)

which when integrating by parts and using (14) and (15) can be written
as

ak
1,1 =

1

2v
Q0,1(xl, xu) + P (xl, xu). (75)

At the pay-off, k = K, we have two special cases. The call for which
xl = 0 and xu → ∞ so that

aK
1,1 =

1

2v
Q0,1(0,∞) + P (0,∞),

=
β

2v
√

π
+

1

2
, (76)

and the put for which xl → −∞ and xu = 0 so that

aK
1,1 =

1

2v
Q0,1(−∞, 0) + P (−∞, 0),

=
−β

v
√

π
+

1

2
. (77)

At the general time step k, there are two special cases of interest.
Only upper barrier (xl → −∞) so that
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ak
1,1 =

1

2v
Q0,1(−∞, xu) + P (−∞, xu),

=
1

2v
[R0,1(−∞) − R0,1(xu)] + P (−∞, xu),

=
−
√

2

2v
H1(vxu + b) + Φ(

√
2xu). (78)

The case of only lower barrier (xu → ∞) so that

ak
1,1 =

1

2v
Q0,1(xl,∞) + P (xl,∞),

=
1

2v
[R0,1(xl) − R0,1(∞)] + P (xl,∞),

=

√
2

2v
H1(vxl + β) +

[

1 − Φ(
√

2xl)
]

. (79)

E The coefficient a
k
m,o

By definition

ak
m,o =

1

2mm!vm

1√
π

∫ xu

xl

e−x2

Hm(x)dx. (80)

Using the three-term reccurence relation,

Hm(x) = 2xHm−1(x) − 2(m − 1)Hm−2(x) (81)

equation (80) can be written as

ak
m,0 = W − 1

2v2
ak

m−2,o, (82)

where we set

W =
1

2mm!vm

1√
π

∫ xu

xl

2xe−x2

Hm−1(x)dx. (83)

Integrating by parts we find that

W =

√
2

2mm!vm

[

Hm−1(xl)φ(
√

2xl) − Hm−1(xu)φ(
√

2xu)
]

+
1

2mv2
ak

m,o, (84)

which when substituted back into (82) gives

ak
m,o =

√
2

2mm!vm

[

Hm−1(xl)φ(
√

2xl) − Hm−1(xu)φ(
√

2xu)
]

. (85)

Use of (14) finally allows us to write
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ak
m,0 =

1

2mv
Qm−1,o(xl, xu). (86)

At the pay-off, k = K, we have two special cases. The call for which
xl = 0 and xu → ∞ so that

aK
m,o =

1

2mv
Qm−1,o(0,∞),

=
1

2mv
[Rm−1,0(0) − Rm−1,0(0)] ,

=
1

2mm!vm

Hm−1(0)√
π

, (use of (13)),

=
1

2mv
√

π
Lm−1(0), (use of (11)). (87)

The put for which xl → −∞ and xu = 0 so that

aK
m,o =

1

2mv
Qm−1,o(−∞, 0),

=
1

2mv
[Rm−1,0(−∞) − Rm−1,0(0)] ,

=
−1

2mm!vm

Hm−1(0)√
π

, (use of (13)),

=
−1

2mv
√

π
Lm−1(0), (use of (11)). (88)

At the general time step k, there are two special cases of interest. Only
upper barrier (xl → −∞) when,

ak
m,o =

1

2mv
Qm−1,o(−∞, xu),

=
1

2mv
[Rm−1,o(−∞) − Rm−1,o(xu)] ,

=
−
√

2

2mm!vm
Hm−1(xu)φ(

√
2xu), (use of (13))

=
−
√

2

2mv
Lm−1(xu)φ(

√
2xu), (use of (11)). (89)

Only lower barrier (xu → ∞) when
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ak
m,o =

1

2mv
Qm−1,o(xl,∞),

=
1

2mv
[Rm−1,o(xl) − Rm−1,o(∞)] ,

=

√
2

2mm!vm
Hm−1(xl)φ(

√
2xl), (use of (13))

so finally

=

√
2

2mv
Lm−1(xl)φ(

√
2xl), (use of (11)). (90)

F The coefficient a
k
0,n

By definition

ak
o,n =

1√
π

∫ xu

xl

e−x2

Hn(vx + b)dx. (91)

Using the three-term reccurance relation,

Hn(vx + b) = 2(vx + β)Hn−1(vx + b) − 2(n − 1)Hn−2(vx + b), (92)

it follows that

ak
0,n = vW + 2βak

o,n−1 − 2(n − 1)ak
o,n−2, (93)

where we set

W =
1√
π

∫ xu

xl

2xe−x2

Hn−1(vx + β)dx. (94)

Integrating by parts, we find that

W =

[

−Hn−1(vx + β)
e−x2

√
π

]xu

xl

+ 2v(n − 1)ak
0,n−2, (95)

which reduces (93) to

ak
o,n = v

√
2
[

Hn−1(vxl + β)φ(
√

2xl) − Hn−1(vxu + β)φ(
√

2xu)
]

+ 2βak
o,n−1 + 2(v2 − 1)(n − 1)ak

o,n−2 (96)

which by use of (14) can be written as

ak
o,n = vQo,n−1(xl, xu) + 2βak

o,n−1 + 2(v2 − 1)(n − 1)ak
o,n−2. (97)

At the pay-off, k = K, we have two special cases. The call for which
xl = 0 and xu → ∞, so that
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aK
o,n = vQo,n−1(0,∞) + 2βaK

o,n−1 + 2(v2 − 1)(n − 1)aK
o,n−2

= v [Ro,n−1(0) − Ro,n−1(∞)] + 2βaK
o,n−1 + 2(v2 − 1)(n − 1)aK

o,n−2,

(98)

which by use of (14) finally reduces to

aK
o,n =

v√
π

Hn−1(β) + 2βaK
o,n−1 + 2(v2 − 1)(n − 1)aK

o,n−2. (99)

The put for which xl → −∞ and xu = 0 so that

ak
o,n = vQo,n−1(−∞, 0) + 2βaK

o,n−2 + 2(v2 − 1)(n − 1)aK
o,n−2,

= v [Ro,n−1(−∞) − Ro,n−1(0)] + 2baK
o,n−1 + 2(v2 − 1)(n − 1)aK

o,n−2,

(100)

which by use of (14)finally reduces to

aK
o,n =

−v√
π

Hn−1(b) + 2βaK
o,n−1 + 2(v2 − 1)(n − 1)aK

o,n−2. (101)

At the general time step k, there are two special cases of interest. The case
of only upper barrier (xl → −∞), when

ak
o,n = vQo,n−1(−∞, xu) + 2βak

o,n−1 + 2(v2 − 1)(n − 1)ak
o,n−2,

= v [Ro,n−1(−∞) − Ro,n−1(xu)] + 2bak
o,n−1 + 2(v2 − 1)(n − 1)ak

o,n−2,

(102)

which by use of (14) reduces to

ak
o,n = −v

√
2Hn−1(vxu + β)φ(

√
2xu) + 2βak

o,n−1 + 2(v2 − 1)(n − 1)ak
o,n−2.

(103)

The case of only lower barrier (xu → ∞), when

ak
o,n = vQo,n−1(xl,∞) + 2βak

o,n−1 + 2(v2 − 1)(n − 1)ak
o,n−2,

= v [Ro,n−1(xl) − Ro,n−1(∞)] + 2βak
o,n−1 + 2(v2 − 1)(n − 1)ak

o,n−2,

(104)

which by use of (14) reduces to

ak
o,n = v

√
2Hn−1(vxl + β)φ(

√
2xl) + 2βak

o,n−1 + 2(v2 − 1)(n − 1)ak
o,n−2.

(105)
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G The coefficient a
k
m,n

By definition

ak
m,n =

1

2mm!vm

1√
π

∫ xu

xl

e−x2

Hm(x)Hn(vx + b)dx. (106)

Using the three-term reccurence relation,

Hm(x) = 2xHm−1(x) − 2(m − 1)Hm−2(x), (107)

equation (106) can be written as

ak
m,n = W − 1

2mv2
ak

m−2,n, (108)

where we set

W =
1

2mm!vm

1√
π

∫ xu

xl

2xe−x2

Hm−1(x)Hn(vx + b)dx. (109)

Integrating by parts we find that

W =

√
2

2mm!vm

[

Hm−1(xl)Hn(vxl + β)φ(
√

2xl) − Hm−1(xu)Hn(vx + β)φ(
√

2xu)
]

+
1

2mv2
ak

m−2,n +
n

m
ak

m−1,n−1, (110)

which by use of (15) can be written as

W =
1

2mv
Qm−1,n +

1

2mv2
ak

m−2,n +
n

m
ak

m−1,n−1. (111)

Finally, substituting (111) back into (108) yields

ak
m,n =

1

2mv
Qm−1,n +

n

m
ak

m−1,n−1. (112)

At the pay-off, k = K, we have two special cases. The call for which
xl = 0 and xu → ∞, so that

aK
m,n =

1

2mv
Qm−1,n(0,∞) +

n

m
aK

m−1,n−1,

=
1

2mv
[Rm−1,n(0) − Rm−1,n(∞)] (use of (14))

+
n

m
ak

m−1,n−1, (113)

which by use of (13) reduces to



26 Carl Chiarella, Nadima El–Hassan, and Adam Kucera

aK
m,n =

√
2

2mv
√

π
Lm−1(0)Hm(β) +

n

m
aK

m−1,n−1. (114)

The put for which xl → −∞ and xu = 0, so that

aK
m,n =

1

2mv
Qm−1,n(−∞, 0) +

n

m
aK

m−1,n−1,

=
1

2mv
[Rm−1,n(−∞) − Rm−1,n(0)] +

n

m
aK

m−1,n−1, (115)

which by use of (13) reduces to

aK
m,n =

−
√

2

2mv
√

π
Lm−1(0)Hm(β) +

n

m
aK

m−1,n−1. (116)

At the general time step k, there are two special cases. The case of only
upper barrier (xl → −∞), when

ak
m,n =

1

2mv
Qm−1,n(−∞, xu) +

n

m
ak

m−1,n−1

=
1

2mv
[Rm−1,n(−∞) − Rm−1,n(xu)] +

n

m
ak

m−1,n−1 (117)

which by use of (13) finally reduces to

ak
m,n =

−
√

2

2mv
Lm(xu)Hn(vxu + β)φ(

√
2xu) +

n

m
ak

m−1,n−1. (118)

The case of only lower barrier (xu → ∞), when

ak
m,n =

1

2mv
Qm−1,n(xl,∞) +

n

m
ak

m−1,n−1 (119)

=
1

2mv
[Rm−1,n(xl) − Rm−1,n(∞)] +

n

m
ak

m−1,n−1, (120)

which by use of (13) finally reduces to

ak
m,n =

√
2

2mv
Lm−1(x)Hn(vxl + b) +

n

m
ak

m−1,n−1. (121)

H Useful Notation

P (xl, xu) = Φ(
√

2xu) = Φ(
√

2xl) (122)

Qm,n(xl, xu) = Rm,n(xl) − Rm,nxu (123)
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where
Rm,n(x) =

√
2Lm(x)Hn(vx + b)φ(

√
2x) (124)

with

Lm(x) =
1

2mm!V m
Hm(x) (125)

and

φ(x) =
1√
2π

e
−x2

2 , Φ(x) =
1√
2π

∫ x

0

e
−ξ2

2 dξ (126)

furthermore,

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x) (127)

with
Ho(x) = 1 and H1(x) = 2x (128)

Lm(x) =
x

mV
Lm−1(x) − 1

2mV 2
Lm−2(x) (129)

with
Lo(x) = 1 and L1(x) =

x

V
(130)

Let us define

Lm(x) =
1

2mm!V m
Hm(x) (131)

Using the three term reccurance relation

Hm(x) = 2xHm−1(x) − 2(m − 1)Hm−2(x) (132)

and nothing that

2

2mm!V m
=

1

mV

[

1

2m−1(m − 1)!V m−1

]

(133)

2(m − 1)

2mm!V m
=

1

2mV 2

[

1

2m−2(m − 2)!V m−2

]

(134)

we instantly have that

Lm(x) =
x

mV
Lm−1(x) − 1

2mV 2
Lm−2(x) (135)

with
Lo(x) = 1 (136)

L1(x) =
x

v
(137)

thus the Lm’s can be generated easily using (135), (136), (137).

Now, let us define
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Rm,n(x) =
√

2Lm(x)Hn(vx + b)φ(
√

2x) (138)

Special values (x = 0)

Rm,n(0) =
1√
π

Lm(0)Hn(b) (139)

and in particular,

Rm,0(0) =
1√
π

Lm(0) (140)

R0,n(0) =
1√
π

Hn(b) (141)

Special values (x → ∞, x → −∞)

lim
x→−∞

Rm,n(x) = 0 (142)

lim
x→∞

Rm,n(x) = 0 (143)

Furthermore, using the above notation,

Qm,n(xl, xu) = Rm,n(xl) − Rm,n(xu) (144)

In general,

P (xl, xu) =
[

Φ
(√

2xu

)

− Φ
(√

2xl

)]

(145)

Special cases:

P (−∞,∞) = 1 (146)

P (−∞, 0) =
1

2
(147)

P (0,∞) =
1

2
(148)

P (−∞, xu) = Φ(
√

2xu) (149)

P (xl,∞) = 1 − Φ(
√

2xl) (150)

P (xl, 0) =
1

2
− Φ(

√
2xl) (151)

P (0, xu) = Φ(
√

2xu) − 1

2
(152)
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