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Abstract 12 

This paper presents an improvement of classification performance for electroencephalography 13 

(EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 14 

43 participants. The system employs autoregressive (AR) modeling as the features extraction 15 

algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared 16 

to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised 17 

learning for modeling features in the pre-training layer and supervised learning for classification in 18 

the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes 19 

a deviation of the expected activation of hidden units from a fixed low-level prevents the network 20 

from overfitting and is able to learn low-level structures as well as high-level structures. For 21 

comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN) and original 22 

deep belief networks (DBN) classifiers are used. The classification results show that using AR 23 

feature extractor and DBN classifiers, the classification performance achieves an improved 24 

classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 25 

90.6% and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN 26 

(sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN 27 

classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using 28 

the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, 29 

a specificity of 92.3% and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN 30 

classifier improved accuracy by 13.8%, 9.5% and 2.5% over ANN, BNN and DBN classifiers 31 

respectively.  32 

 33 

 34 

 35 
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1 Introduction 37 

Fatigue during driving is a major cause of road accidents in transportation, and therefore poses a 38 

significant risk of injury and fatality, not only to the drivers themselves but also to other road users 39 

such as passengers, motorbike users, other drivers and pedestrians (Desmond et al., 2012). Driver 40 

fatigue reduces the ability to perform essential driving skills such as vehicle steering control, tracking 41 

vehicle speed, visual awareness and sufficient selective attention during a monotonous driving 42 

condition for a long period of time (Lal and Craig, 2001; Wijesuriya et al., 2007; Craig et al., 2012; 43 

Jurecki and Stańczyk, 2014). As a result an automated countermeasure for a driver fatigue system 44 

with reliable and improved fatigue classification/detection accuracy is needed to overcome the risk of 45 

driver fatigue in transportation (Lal et al., 2003; Vanlaar et al., 2008; Touryan et al., 2013; Touryan et 46 

al., 2014; Chai et al., 2016). 47 

In the digital age, machine learning can be used to provide automated prediction of driver fatigue. 48 

Two approaches can be used in machine learning, which are the regression and classification 49 

methods. The goal of regression algorithms is the prediction of continuous values to estimate driving 50 

performance (Lin et al., 2005; Touryan et al., 2013; Touryan et al., 2014). The outcome of 51 

classification algorithms is to predict the target class, such as the classification between fatigue and 52 

non-fatigue/alert states (Lin et al., 2010; Zhang et al., 2014; Chai et al., 2016; Xiong et al., 2016). 53 

The aim of this study is to improve the accuracy of the prediction of fatigue and non-fatigue states. 54 

As a result, this study focuses on using an advanced classification method for enhancing the accuracy 55 

of a fatigue classification system previously studied (Chai et al., 2016). 56 

As described in a previous paper (Chai et al., 2016), possible driver fatigue assessment includes 57 

psychological and physiological measurements (Lal and Craig, 2001; Borghini et al., 2014). For 58 

instance, psychological measurement of driver fatigue involves the need for frequent self-report of 59 

fatigue status via brief psychometric questionnaires (Lai et al., 2011). Such an approach would be 60 

difficult to implement and may well be biased given its subjective nature (Craig et al., 2006). 61 

Physiological measurement of the driver fatigue includes video measurement of the face (Lee and 62 

Chung, 2012), brain signal measurement using electroencephalography (EEG) (Lal et al., 2003; Lin 63 

et al., 2005; Craig et al., 2012; Chai et al., 2016), eye movement tracking system using camera and 64 

electrooculography (EOG) (Hsieh and Tai, 2013) and heart rate measurement using 65 

electrocardiography (ECG) (Tran et al., 2009; Jung et al., 2014). 66 

Physiological assessment of facial or eye changes using video recording of the driver’s face may lead 67 

to privacy issues. Physiological measurement strategies like monitoring eye blink rates using EOG 68 

and heart rate variability (HRV) using ECG have been shown to reliably detect fatigue (Tran et al., 69 

2009; Hsieh and Tai, 2013). EEG has also been shown  to be a reliable method of detecting fatigue, 70 

as it directly measures neurophysiological signals that are correlated with mental fatigue (Wijesuriya 71 

et al., 2007; Craig et al., 2012; Zhang et al., 2014; Chuang et al., 2015; He et al., 2015; Xiong et al., 72 

2016). Recently, we have shown a classification of EEG-based driver fatigue with the inclusion of 73 

new ICA based pre-processing with a promising classification result (Chai et al., 2016), however, it 74 

was concluded the classification accuracy needs to be improved. As a result, this paper will extend 75 

the work on a potential EEG-based countermeasure driver fatigue system with an improved 76 

classification of fatigue vs. alert states. 77 
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An EEG-based classification countermeasure system requires several components including EEG 78 

signal measurement, signal pre-processing, feature extraction, and classification modules. For feature 79 

extraction in EEG analysis, frequency domain data has been widely explored (Lal and Craig, 2001; 80 

Craig et al., 2012). Power spectral density (PSD) methods are popular for converting the time domain 81 

of EEG signal into the frequency domain (Demandt et al., 2012; Lin et al., 2014). Alternatively, an 82 

autoregressive (AR) modelling parametric approach can also be used for feature extraction in an EEG 83 

classification system (McFarland and Wolpaw, 2008; Chai et al., 2016; Wang et al., 2016). The 84 

advantage of AR modelling is its inherent capacity to model the peak spectra that are characteristic of 85 

the EEG signals and it is an all-pole model making it efficient for resolving sharp changes in the 86 

spectra. In our previous finding, an AR modelling feature extractor provided superior classification 87 

results compared to PSD for EEG-based driver fatigue classification (Chai et al., 2016). Therefore, in 88 

this paper, we present the results of applying AR for modeling feature extraction in order to improve 89 

the accuracy the classification algorithm. The PSD method is also included for comparison. For the 90 

classification, non-linear methods, such as artificial neural networks (ANN), have been used widely 91 

in a variety of applications involving EEG (Nguyen, 2008; Casson, 2014). Bayesian neural networks 92 

(BNN) have also been used in EEG-based driver fatigue classification (Chai et al., 2016). The 93 

Bayesian regularization framework is able to enhance the generalization of neural networks training 94 

regardless of finite and/or noisy data. 95 

Recent attention has been focused on improvement of an ANN approach called deep belief networks 96 

(DBN) (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio, 2009; LeCun et al., 2015), 97 

which involves a fast, unsupervised learning algorithm for the deep generative model and supervised 98 

learning for a discriminative model. The key advantage of this algorithm is the layer-by-layer training 99 

for learning a deep hierarchical probabilistic model efficiently as well as a discriminative fine tuning 100 

algorithm to optimize performance on the classification problems (Bengio, 2009; LeCun et al., 2015). 101 

A DBN classifier is a promising strategy for improving classification of problems including hand-102 

writing character classification (Hinton et al., 2006), speech recognition (Mohamed et al., 2010; 103 

Hinton et al., 2012), visual object recognition (Krizhevsky et al., 2012) and other biomedical 104 

applications (O'Connor et al., 2013; Stromatias et al., 2015). The training of the DBN is based on the 105 

restricted Boltzmann machine (RBM) with layers-wise training of the network per layer at a time 106 

from the bottom up (Hinton et al., 2006). Furthermore, the original RBM approach tended to learn a 107 

distributed non-sparse representation. A modified version of the RBM using sparse-RBM to form a 108 

sparse-deep belief network (sparse-DBN) has shown promising results for modelling low-order 109 

features as well as higher-order features for the application of image classification with improved 110 

accuracy  (Lee et al., 2008; Ji et al., 2014). As a result of this promising advance in classification of 111 

complex features, this paper further investigates the classification of EEG signals associated with 112 

driver fatigue using the sparse-DBN. For comparison purposes, the results from several different 113 

classifiers are included to determine which algorithms are superior with the highest classification 114 

performance. 115 

The main contribution of this paper is the combination of the AR modelling feature extractor and 116 

sparse-DBN classifier which have not been explored previously for EEG-based driver fatigue 117 

classification, with the objective of enhancing the classification performance over past attempts (Chai 118 

et al., 2016). The motivation to utilize the sparse-DBN classifier was to investigate its potential 119 

superiority for classifying fatigue, in comparison to other classifiers. Sparse-DBN is a semi 120 

supervised learning method that combines unsupervised learning for modelling the feature in the pre-121 

training layer and supervised learning for discriminating the feature in the following layer. 122 

Incorporating the sparsity in sparse-DBN, achieved with a regularization term that penalizes a 123 

deviation of the expected activation of hidden units from a fixed low-level, prevents the network 124 
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from overfitting and is able to learn low-level structures as well as high-level structures (Ji et al., 125 

2014). The structure of this paper is as follows: section II covers the background and methodology 126 

including general structure, EEG experiment and pre-processing, feature extraction and classification. 127 

Section III describes results, followed by section IV for discussion and section V for the conclusions. 128 

2 Background and Methodology 129 

2.1 General Structure 130 

The general structure for the EEG-based driver fatigue classification used in this paper is shown in 131 

FIGURE 1 which is divided into four components:  (i) the first component involves EEG data 132 

collection in a simulated driver fatigue environment; (ii) the second component involves data pre-133 

processing for removing EEG artifact and the moving window segmentation; (iii) the third 134 

component involves the features extraction module that converts the signals into useful features; (iv) 135 

the fourth component involves the classification module to process the feature and which translates 136 

into output via training and classification procedures. The output of the classification comprises two 137 

states: fatigue state and alert (non-fatigue) state. 138 

FIGURE 1 | General structure EEG-based driver fatigue classification in this study 139 

2.2 EEG Data Collection 140 

The EEG data collection has been described in a previous paper (Chai et al., 2016). The study was 141 

approved by the Human Research Ethics Committee of the University of Technology Sydney (UTS) 142 

obtained from previous experiments of driver fatigue study (Craig et al., 2006; Wijesuriya et al., 143 

2007; Craig et al., 2012). The dataset contains electrophysiological data from 43 healthy participants 144 

aged between 18 and 55 years who had a current driver’s licence. The study involved continuous 145 

measurement taken during a monotonous simulated driving task followed by post EEG measures and 146 

post-subjective self-report of fatigue. For the simulated driving task, the divided attention steering 147 

simulator (DASS) from Stowood scientific instruments was used (Craig et al., 2012).  Participants 148 

were asked to keep driving at the centre of the road in the simulation task. The participants were also 149 

required to respond to a target number that appeared in any of the four corners of the computer screen 150 

in front of the participants when they were driving in the experiment, so as to record reaction time. 151 

FIGURE 2 | Moving window segmentation for driver fatigue study 152 

The simulation driving task was terminated if the participant drove off the simulated road for greater 153 

than 15 seconds, or if they showed consistent facial signs of fatigue such as head nodding and 154 

extended eyes closure, both determined by analysis of participants’ faces that occurred throughout 155 

the experiment. Three methods were used to validate fatigue occurrence: (i) using video monitoring 156 

for consistent physiological signs of fatigue such as tired eyes, head nodding and extended eye 157 

closure, verified further by EOG analysis of blink rate and eye closure; (ii) using performance 158 

decrements such as deviation off the road, and (iii) using validated psychometrics such as the Chalder 159 

Fatigue Scale and the Stanford Sleepiness Scale. Two participants who did not meet the criterion of 160 

becoming fatigued were excluded from the dataset. The validation of fatigue versus non-fatigue in 161 

these participants has been reported in prior studies (Craig et al., 2006; Craig et al., 2012). The EEG 162 

signals were recorded using a 32-channel EEG system, the Active-Two system (Biosemi) with 163 

electrode positions at: FP1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, PZ, PO3, O1, OZ, 164 

O2, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, AF4, FP2, FZ and CZ. The recorded EEG 165 

data was down sampled from 2048Hz to 256Hz. 166 
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2.3 Data Pre-processing and Segmentation 167 

For the alert status, the first 5 mins of EEG data was selected when the driving simulation task began. 168 

For the fatigue status, the data was selected from the last 5 mins of EEG data before the task was 169 

terminated, after consistent signs of fatigue were identified and verified. Then in each group of data 170 

(alert and fatigue), 20s segments were taken with the segment that was chosen being the first 20 171 

seconds where EEG signals were preserved. For the sample this was all within the first 1 minute of 172 

the 5 minutes selected. Further artifact removal using an ICA-based method was used to remove 173 

blinks, heart and muscle artifact. As a result, 20s of the alert state and 20s of the fatigue state data 174 

were available from each participant. 175 

In the pre-processing module before feature extraction, the second-order blind identification (SOBI) 176 

and canonical correlation analysis (CCA) were utilized to remove artifacts of the eyes, muscle and 177 

heart signals. The pre-processed data were segmented by applying a moving window of 2s with 178 

overlapping 1.75s to the 20s EEG data which provided 73 overlapping segments for each state 179 

(fatigue and alert states) as shown in FIGURE 2. The pre-processing segments were used in the 180 

feature extraction module as described in next section. 181 

2.4 Feature Extraction 182 

For comparison purposes and validity of previous work, a feature extractor using the power spectral 183 

density (PSD), a widely used spectral analysis of feature extractor in fatigue studies, is provided in 184 

this paper. 185 

An autoregressive (AR) model was also applied as a features extraction algorithm in this study. AR 186 

modelling has been used in EEG studies as an alternative to Fourier-based methods, and has been 187 

reported to have improved classification accuracy in previous studies compared to spectral analysis 188 

of the feature extractor (Brunner et al., 2011; Chai et al., 2016). The advantage of AR modelling is its 189 

inherent capacity to model the peak spectra that are characteristic of the EEG signals and it is an all-190 

pole model making it efficient for resolving sharp changes in the spectra. The fast Fourier transform 191 

(FFT) is a widely used nonparametric approach that can provide accurate and efficient results, but it 192 

does not have acceptable spectral resolution for short data segments (Anderson et al., 2009). AR 193 

modelling requires the selection of the model order number. The best AR order number requires 194 

consideration of both the signal complexity and the sampling rate. If the AR model order is too low, 195 

the whole signal cannot be captured in the model. On the other hand, if the model order is too high, 196 

then more noise is captured. In a previous study, the AR order number of five provided the best 197 

classification accuracy (Chai et al., 2016). The calculation of the AR modelling was as follows: 198 

𝒙̂(𝒕) = ∑ 𝒂(𝒌)𝒙̂(𝒕 − 𝒌) + 𝒆(𝒕)

𝑷

𝒌=𝟏

                                                              (𝟏) 

where 𝒙̂(𝒕) denotes EEG data at time (t), P denotes the AR order number, e(t) denotes the white 199 

noise with zero means error and finite variance, and a(k) denotes the AR coefficients.  200 

2.5 Classification Algorithm 201 

The key feature of DBN is the greedy layer-by-layer training to learn a deep, hierarchical model 202 

(Hinton et al., 2006). The main structure of the DBN learning is the restricted Boltzmann machine 203 

(RBM). A RBM is a type of Markov random field (MRF) which is a graphical model that has a two-204 
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layer architecture in which the observed data variables as visible neurons are connected to hidden 205 

neurons. A RBM is as shown in which m visible neuron (v=(v1, v2, v3,…,vm)) and n hidden neurons 206 

(h=(h1, h2,…, hn)) are fully connected via symmetric undirected weights and there is no intra-layer 207 

connections within either the visible or the hidden layer. 208 

The connections weights and the biases define a probability over the joint states of visible and hidden 209 

neurons through energy function E(v,h), defined as follows: 210 

𝑬(𝒗, 𝒉; 𝜽) = − ∑

𝒎

𝒊=𝟏

∑ 𝒘𝒊𝒋𝒗𝒊

𝒏

𝒋=𝟏

𝒉𝒋 − ∑ 𝒂𝒊𝒗𝒊

𝒎

𝒊=𝟏

− ∑ 𝒃𝒋𝒉𝒊

𝒏

𝒋=𝟏

                                                  (𝟐) 

where wij denotes the weight between vi and hj for all i  {1,…, m} and j  {1,…, n}; ai and bj are 211 

the bias term associated with the i
th

 and j
th

 visible and hidden neurons;   {W,b,a} is  the model 212 

parameter with symmetric weight parameters Wnm.  213 

For RBM training, the gradient of log probability of a visible vector (v) over the weight wij with the 214 

updated rule calculated by constructive divergence (CD) method is as follows: 215 

∆𝒘𝒊𝒋 =   (〈𝒗𝒊𝒉𝒋〉𝒅𝒂𝒕𝒂 − 〈𝒗𝒊𝒉𝒋〉𝒓𝒆𝒄𝒐𝒏)                                                (𝟑) 

where  is a learning rate, 〈𝒗𝒊𝒉𝒋〉𝒓𝒆𝒄𝒐𝒏  is the reconstruction of original visible units which is calculated 216 

by setting the visible unit to a random training vector. The updating of the hidden and visible states is 217 

considered as follows: 218 

𝒑(𝒉𝒋 = 𝟏 | 𝒗) = 𝝈 (𝒃𝒋 + ∑ 𝒗𝒊𝒘𝒊𝒋

𝒊

)                                               (𝟒) 

𝒑(𝒗𝒊 = 𝟏 | 𝒉) = 𝝈 (𝒂𝒊 + ∑ 𝒉𝒋𝒘𝒊𝒋

𝒊

)                                               (𝟓) 

where  is the logistic sigmoid function. 219 

The original RBM tended to learn a distributed, non-sparse representation of the data, however 220 

sparse-RBM is able to play an important role in learning algorithms. In an information-theoretic 221 

sense, sparse representations are more efficient than the non-sparse ones, allowing for varying of the 222 

effective number of bits per example and able to learn useful low-level and high-level feature 223 

representations for unlabeled data (ie. unsupervised learning) (Lee et al., 2008; Ji et al., 2014).  224 

This paper uses the sparse-RBM to form the sparse-DBN for EEG-based driver fatigue classification. 225 

The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the 226 

expected activation of hidden units from a fixed low-level, which prevents the network from 227 

overfitting, as well as allowing it to learn low-level structures as well as high-level structures (Ji et 228 

al., 2014). The sparse-RBM is obtained by adding a regularization term to the full data negative log 229 

likelihood with the following optimization: 230 

𝐦𝐢𝐧
{𝒘𝒊𝒋𝒂𝒊𝒃𝒋}

𝑬(𝒗, 𝒉, 𝜽) − ∑ 𝐥𝐨 𝐠 ∑ 𝑷(𝒗(𝒍), 𝒉(𝒍))

𝒉

𝒎

𝒍=𝟏

+ 𝝀 ∑ |𝒑 −
𝟏

𝒎
∑ 𝔼 [𝒉𝒋

(𝒍)
|𝒗(𝒍)]

𝒎

𝒍=𝟏

|

𝟐𝒏

𝒋=𝟏

              (𝟔)   
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where 𝔼[.] is the conditional expectation given the data, λ is a regularization constant and p is a 231 

constant controlling the sparseness of the hidden neurons hj. The DBN is constructed by stacking a 232 

predefined number of RBMs to allow each RBM model in the sequence to receive a different 233 

representation of the EEG data. The modelling between visible input (v) and N hidden layer hk is as 234 

follows: 235 

𝑷(𝒗, 𝒉𝟏, … , 𝒉𝒍) = (∏ 𝑷([𝒉(𝒌)|𝒉(𝒌+𝟏)])

𝒍−𝟐

𝒌=𝟎

) 𝑷(𝒉𝒍−𝟏, 𝒉𝒍)                                       (𝟕) 

where v = h
0
, P(h

k
|h

k+1
) is a conditional distribution for the visible units conditioned on the hidden 236 

units of the RBM at level k and P(h
l-1

,h
l
) is the visible-hidden joint distribution at the top-level RBM. 237 

Two training types of the RBM can be used: generative and discriminative.  The generative training 238 

of RBM is used as pre-training with un-supervised learning rule. After greedy layer-wise 239 

unsupervised learning, the DBN can be used for discriminative ability using the supervised learning. 240 

This paper uses a sparse variant of DBN  with 2 layers of semi supervised sparse-DBN as shown in 241 

FIGURE 3 with the first layer using the sparse-RBM for generative mode (un-supervised learning) 242 

and the second layer using the sparse-RBM in discriminative mode (supervised learning). After 243 

layer-by-layer training in DBN, an ANN with back-propagation method is used through the whole 244 

classifier to fine-tune the weights for optimal classification.  245 

FIGURE 3 | Structure of sparse-DBN for driver fatigue classification: (A) Greedy learning 246 

stack of sparse-RBM; (B) the corresponding sparse-DBN. 247 

The performance indicators, including, sensitivity or true positive rate (TPR= TP/(TP+FN)), 248 

specificity or true negative rate (TNR=TN/(TN+FP)) and accuracy (TP+TN)/(TP+TN+FP+FN), were 249 

used for the performance measurement. TP (true positive) denotes the number of the fatigue data 250 

correctly classified as fatigue state. FP (false positive) is the number of alert datasets classified as a 251 

fatigue state. TN (true negative) is number of alert datasets correctly classified as an alert state. FN 252 

(false negative) is the fatigue datasets classified as an alert state. 253 

For network learning generalization, we presented the results based on two cross-validation 254 

techniques: an early stopping technique and k-fold cross-validation. The early stopping technique 255 

used the ‘hold-out cross validation’ – one of the widely used cross validations techniques. Basically, 256 

it divided the dataset into three subsets (training, validation and testing sets). The model is trained 257 

using the training set while the validation set is periodically used to evaluate the model performance 258 

to avoid over-fitting/over-training. The accuracy of the testing set is used as the result of the model’s 259 

performance. Another cross validation technique is known as k-fold cross-validation (k=3).  In k-fold 260 

cross-validation (k=3), the dataset is divided into three equal (or near equal) sized folds. The training 261 

of the network uses 2 folds and the testing the network uses the remaining fold. The process of 262 

training and testing is repeated for three possible choices of the subset omitted from the training. The 263 

average performance on the three omitted subsets is then used as an estimate of the generalization 264 

performance. 265 

Furthermore, a receiver operating characteristic (ROC) graph is used to evaluate further the 266 

performance of the proposed method with the compared method for this study. The areas under the 267 

curve of the ROC (AUROC) were also computed to evaluate quantitatively the classification 268 

performance. 269 
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 270 

3 Results 271 

From the 32-EEG channel dataset for the 43 participants (2 participants who did not meet the 272 

criterion of becoming fatigued were excluded from original 45 participants), 20s of alert state and 20s 273 

of fatigue state data were available from each participant. This was fed to the pre-processing module 274 

including artifact removal and a 2s moving window segmentation with overlapping 1.75s to the 20s 275 

EEG data, providing 73 overlapping segments for each state. As a result, from the 43 participants, a 276 

total 6278 units of datasets were formed for the alert and fatigue states (each state having 3139 units). 277 

The segmented datasets were fed to the feature extraction module. AR modelling with the order 278 

number of 5 was used for the feature extractor as it provided an optimum result from the previous 279 

study (Chai et al., 2016). The size of the AR features equaled the AR order number multiplied with 280 

32 units of EEG channels, thus the AR order number of 5 resulted in 160 units of the AR features. 281 

For comparison and validity purposes, this paper includes the PSD, a popular feature extractor in the 282 

EEG classification for driver fatigue classification. The spectrum of EEG bands consisted of: delta 283 

(0.5-3Hz), theta (3.5-7.5Hz), alpha (8-13Hz) and beta activity (13.5-30Hz). The total power for each 284 

EEG activity band was used for the features that were calculated using the numerical integration 285 

trapezoidal method, providing 4 units of power values. This resulted in 128 units of total power of 286 

PSD for the 32 EEG channels used. 287 

The variant of standard DBN algorithm, sparse-DBN with semi supervised learning used in this 288 

paper, comprised of one layer of sparse-RBM with the generative type learning and the second layer 289 

of sparse-RBM with discriminative type of learning. The training of the sparse-DBN is done layer-290 

by-layer. The ANN with back-propagation method was used to fine-tune the weights for optimal 291 

classification. 292 

TABLE 1 | Testing several values of regularization constant (λ) and the constant controlling the 293 

sparseness (p) in order to select values with the lowest MSE (trial-and-error method) 294 

For the discriminative learning of sparse-DBN, the total 6278 datasets were divided into three 295 

subsets with similar amounts of number sets: training (2093 sets)   validation (2093 sets) and testing 296 

sets (2092 sets). The generative learning of sparse-DBN uses unlabeled data from the training sets. 297 

For the training of the sparse-DBN using the learning rate () of 0.01, the maximum epoch is set to 298 

200, with a regularization constant (λ) of 1, and the constant controlling the sparseness (p) of 0.02. 299 

The selection of these training parameters was chosen by trial-and-error, with the chosen values 300 

achieving the best training result. TABLE 1 shows the selection of the regularization constant (λ), 301 

with the chosen value of 1 and the constant controlling the sparseness (p) with the chosen value of 302 

0.02, providing lowest the mean square error (MSE) values of 0.00119 (training set) and 0.0521 303 

(validation set) with the iteration number of 69. The average of the MSE values was 0.0046±0.0018 304 

(training set), and 0.0760±0.0124.  305 

FIGURE 4 |Plot of the training and validation MSE for early stopping of classifiers:  (A) MSE 306 

training and validation of ANN. (B) MSE training of BNN. (C) MSE training of DBN in hidden 307 

layer 1 (Generative mode). (D) MSE training of sparse-DBN in hidden layer 1 (Generative 308 

mode). (E) MSE training and validation of DBN in hidden layer 2 (Discriminative mode). (F) 309 

MSE training and validation of DBN in hidden layer 2 (Discriminative mode). 310 
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TABLE 2 | The best MSE and iteration numbers from the training of the classifiers (ANN, 311 

BNN, DBN and Sparse-DBN) 312 

In order to prevent overfitting/over-training in the network, a validation-based early stopping method 313 

was used for the proposed classifier of sparse-DBN. The plot of the mean square error (MSE) 314 

training set and validation set are shown in FIGURE 4 for classification using AR and sparse-DBN. 315 

TABLE 2 shows the best performance of the training in term of the MSE values and iteration 316 

numbers. For comparison, the results for ANN, BNN and DBN classifier are also included.  317 

ANN, DBN and sparse-DBN classifiers utilized the early stopping framework (with the dataset 318 

divided into training validation and test sets) to prevent the overfitting problem, except for BNN 319 

(where the dataset was divided into training and testing). The BNN used a different framework for 320 

preventing the overfitting problem utilizing adaptive hyper-parameters in the cost function to prevent 321 

the neural network weight from being too large, which would have resulted in poor generalization. 322 

As a result, the validation set is not required for the BNN. A detailed analysis of BNN for EEG based 323 

driver fatigue classification has been addressed in our previous study (Chai et al., 2016). The core 324 

parameters for the training classifiers (ANN, BNN, DBN and sparse-DBN) are the ANN-based 325 

classifier which includes the number of hidden nodes, an activation function and learning rate. In the 326 

BNN classifier, an additional hyper-parameter is introduced to fine tune the optimal structure of the 327 

ANN. Further, in the sparse-DBN classifier, the regulation constant and constant controlling of 328 

sparseness were introduced for the training the DBN classifier. The DBN and sparse-DBN used two 329 

hidden layers: the first hidden layer as generative mode (un-supervised learning) and second hidden 330 

layer as discriminative mode (supervised learning). 331 

The mean square error (MSE) of the training set decreased smoothly. Using ANN classifier, the 332 

training network stopped after 100 iterations as the MSE validation set reached a maximum fail of 10 333 

times the increment value to ensure no over-training happened with the best validation MSE at 0.115. 334 

Using a BNN classifier, the training network stopped after 77 iterations as the conditions are met 335 

with the BNN parameters with the best validation MSE at 0.0979. Using a DBN classifier in the first 336 

hidden layer (generative mode), the training network stopped after 200 iterations with best MSE at 337 

0.434. Using a DBN classifier  in the second hidden layer (discriminative mode), the training 338 

network stopped after 68 iterations as the MSE validation set reached maximum fail of 10 times 339 

increment value to ensure no over-training happened with the best validation MSE at 0.0649. Using 340 

the proposed method of sparse-DBN classifier in the first hidden layer (generative mode), the training 341 

network stopped after 200 iterations with the best of MSE at 0.388. Using the proposed method of 342 

sparse-DBN classifier in the second hidden layer (discriminative mode), the training network stopped 343 

after 69 iterations as the MSE validation set reached maximum fail of 10 times increment value to 344 

ensure no over-training happened, with the best validation MSE at 0.0520. 345 

Using the classification results from the validation set, the optimal number of hidden neurons of the 346 

sparse-DBN is shown in FIGURE 5. For the PSD feature extraction, using 10 hidden nodes resulted 347 

in the best classification performance. For the AR feature extraction, using 15 hidden nodes produced 348 

the best classification performance. These optimal hidden nodes were then used for the training of the 349 

network to classify the test set. Also, the results using a different number of layers (two layers, three 350 

layers, five layers and ten layers) are also provided in FIGURE 5, with the 2 layers (generative mode 351 

for the first layer and discriminative mode for second layer) providing the optimal number of layers 352 

in this study. This figure shows that using a higher number of layers (three layers, five layers and ten 353 

layers) results in a lower accuracy compared to results of using only two layers. Therefore, the two 354 

layers sparse-DBN was the chosen architecture providing the higher accuracy. The optimal size of 355 
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sparse-DBN to classify the PSD features of the EEG-based driver fatigue is [128-10-10-2] and the 356 

optimal size of sparse DBN to classify the AR feature is [160-15-15-2]. TABLE 3 shows the results 357 

for the classification of the fatigue state vs. alert state using AR feature extractor and sparse-DBN 358 

classifier. For a feature extractor comparison and validity of previous result, the result of the 359 

classification using PSD feature extractor method is included. Also for classifier comparison, the 360 

classification results using original DBN, BNN and ANN are given. 361 

FIGURE 5 | Plot of the optimal number hidden nodes and layers 362 

First, for the artificial neural network (ANN) classifier: (i) ANN with PSD, for the fatigue data, of a 363 

total with 1046 units of actual fatigue dataset, 782 units were correctly classified as fatigue states 364 

(true positive: TP), resulting in a sensitivity of 74.8%. For the alert group, of a total of 1046 units of 365 

actual alert dataset, 731 units of alert data were correctly classified as alert state (true negative: TN), 366 

resulting in a specificity of 69.9%. The combination of ANN and PSD resulted in an accuracy of 367 

72.3%. (ii) ANN with AR, for the fatigue group, of a total of 1046 units of actual fatigue dataset, 845 368 

units of fatigue data were correctly classified as fatigue states (TP), resulting in a sensitivity of 369 

80.8%. For the alert group, of a total of 1046 units of actual alert dataset, 814 units of alert data were 370 

correctly classified as alert states (TN), resulting in a specificity of 77.8%, while the combination of 371 

ANN with AR resulted in an improved accuracy of 79.3% compared to ANN with PSD. 372 

Second, for the Bayesian neural networks (BNN) classifier: (i) BNN with PSD achieved an 373 

improvement compared to ANN with PSD, and for the fatigue group, of a total of 1046 units of 374 

actual fatigue dataset, 808 units of fatigue data were correctly classified as fatigue states (TP), 375 

resulting in a sensitivity of 77.2%. For the alert state, of a total of 1046 units of actual alert dataset, 376 

791 units of alert data were correctly classified as alert state (TN), resulting in a specificity of 75.6%. 377 

The combination BNN with PSD resulted in an accuracy of 76.4%. (ii) BNN with AR achieved an 378 

improvement compared to ANN with AR, and ANN with PSD. BNN with PSD, for the fatigue state, 379 

of a total of 1046 units of actual fatigue data, 882 units were correctly classified as fatigue states 380 

(TP), resulting in a sensitivity of 84.3%. For the alert state, of a total of 1046 units of actual alert 381 

data, 868 units of alert data were correctly classified as alert states (TN), resulting in a specificity of 382 

83%. The combination BNN with AR resulted in an accuracy of 83.6%. 383 

TABLE 3 | Results classification fatigue state versus alert state for the test set on different 384 

feature extractors and classifiers 385 

Third, when using the deep belief network (DBN) classifier: (i) DBN with PSD achieved a further 386 

improvement compared to BNN with PSD, ANN with PSD and ANN with AR; for the fatigue state, 387 

of a total of 1046 units of actual fatigue data, 873 units of fatigue data were correctly classified as 388 

fatigue states (TP), resulting in a sensitivity of 83.5%. For the alert state, of a total of 1046 units of 389 

actual alert data, 833 units of alert data were correctly classified as alert state (TN), resulting in a 390 

specificity of 79.6%. The combination DBN with PSD resulted in an accuracy of 81.5%. (ii) DBN 391 

with AR achieved further improvement compared to BNN with AR, ANN with AR, DBN with PSD, 392 

BNN with PSD and ANN with PSD, for the fatigue state, of a total of 1046 units of actual fatigue 393 

data, 950 units of fatigue data were correctly classified as fatigue states (TP), resulting in a sensitivity 394 

of 90.8%. For the alert state, of a total of 1046 units of actual alert data, 946 units of alert data were 395 

correctly classified as alert states (TN), resulting in a specificity of 90.4%. The combination of DBN 396 

with AR resulted in an accuracy of 90.6%. 397 
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Fourth, using sparse deep belief networks (sparse-DBN): (i) sparse-DBN with PSD achieved 398 

additional improvements compared to DBN with PSD, BNN with PSD, ANN with PSD, BNN with 399 

AR and ANN with AR; for the fatigue state, of a total of 1046 units of actual fatigue data, 919 units 400 

of fatigue data were correctly classified as fatigue states (TP), resulting in a sensitivity of 87.9%. For 401 

the alert state, of a total of 1046 units of actual alert dataset, 855 units of alert data were correctly 402 

classified as alert state (TN), resulting in a specificity of 81.7%. The combination sparse-DBN with 403 

PSD resulted in an accuracy of 84.8%. (ii) sparse-DBN with AR achieved the most superior result to 404 

the other classifier and feature extractor combination   with the fatigue state, of a total of 1046 units 405 

of actual fatigue data, 982 units of fatigue data were correctly classified as fatigue states (TP), 406 

resulting in a sensitivity of 93.9%. For the alert state, of a total of 1046 units of actual alert data, 965 407 

units of alert data were correctly classified as alert states (TN), resulting in a specificity of 92.3%. 408 

The combination sparse-DBN with AR resulted in best accuracy of 93.1% compared to the other 409 

classifier and feature extractor combinations. 410 

4 Discussion 411 

In summary, using the PSD feature extractor: (i) compared to the ANN classifier, the sparse-DBN 412 

classifier improved the classification performance with sensitivity by 13.1% (from 74.8% to 87.9%), 413 

specificity by 11.8% (from 69.9% to 81.7%) and accuracy by 12.5% (from 72.3% to 84.8%); (ii) 414 

compared to the BNN classifier, the sparse-DBN resulted in improved performance indicators for 415 

sensitivity by 10.7% (from 77.2% to 87.9%), specificity by 6.1% (from 75.6% to 81.7%) and 416 

accuracy by 8.4% (from 76.4% to 84.8%); (iii) compared to the DBN classifier, the sparse-DBN 417 

resulted in improved performance indicators for sensitivity by 4.4% (from 83.5% to 87.9%), 418 

specificity by 2.1% (from 79.6% to 81.7%) and accuracy by 3.3% (from 81.5% to 84.8%). 419 

Further, using the AR feature extractor: (i) compared to the ANN classifier, the sparse-DBN 420 

classifier improved the classification performance with sensitivity by 13.1% (from 80.8% to 93.9%), 421 

specificity by 14.5% (from 77.8% to 92.3%) and accuracy by 13.8% (from 79.3% to 93.1%); (ii) 422 

compared to the BNN classifier, the sparse-DBN resulted in improved performance indicators for 423 

sensitivity by 9.6% (from 84.3% to 93.9%), specificity by 9.3% (from 83.0% to 92.3%) and accuracy 424 

by 9.5% (from 83.6% to 93.1%); (iii) compared to the DBN classifier, the sparse-DBN resulted in 425 

improved performance indicators for sensitivity by 3.1% (from 90.8% to 93.9%), specificity by 1.9% 426 

(from 90.4% to 92.3%) and accuracy by 2.5% (from 90.6% to 93.1%).  427 

The result of sensitivity (TPR) and specificity (TNR) analyses can also be viewed as the false 428 

positive rate (FPR=1−specificity) and false negative rate (FNR = 1−sensitivity). The FPR is the rate 429 

of the non-fatigue (alert) state being incorrectly classified as fatigue state. The FNR is the rate of 430 

fatigue state being incorrectly classified as an alert state. As a result, the proposed classifier (sparse-431 

DBN) with the AR feature extractor resulted in a sensitivity (TPR) of 93.9%, FNR of 6.1%, 432 

specificity (TNR) of 92.3% and FPR of 7.7%. For a real-time implementation, an additional 433 

debounce algorithm could be implemented. By adding a debounce component, it masks multiple 434 

consecutive false positive detection that may decrease the FPR (Bashashati et al., 2006). The real-435 

time implementation with a debounce algorithm will be a future direction in this area of our study. 436 

TABLE 4 | Results of classification accuracy fatigue state versus alert state with chosen AR 437 

feature extractors and different classifiers – k-fold cross validation (3 folds) approach 438 

For the early stopping classifier comparison, a k-fold cross-validation, a popular method for EEG 439 
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machine learning, is evaluated as well (Billinger et al., 2012). As a result, this study used k-fold 440 

cross-validation (k = 3) with the mean value of ten results of accuracies on each fold. A total of 6278 441 

datasets were divided into three folds (first fold=2093 sets, second fold=2093 sets and third fold= 442 

2092 sets). Overall, the mean value accuracy of three folds was reported. TABLE 4 shows results 443 

using k-fold cross validation approach with the chosen AR feature extraction and different classifiers. 444 

The result shows that the mean accuracy using the k-fold cross validation approach is comparable to 445 

the early stopping approach with the proposed classifier of sparse-DBN as the best classifier 446 

(94.8%±0.011 of sensitivity, 93.3%±0.012 of specificity and 94.1%±0.011 of accuracy) and followed 447 

by DBN (90.9%±0.005 of sensitivity, 90.5%±0.005 of specificity and 90.7%±0.005 of accuracy), 448 

BNN (84.8%±0.012 of sensitivity, 83.6%±0.015 of specificity and 84.2%±0.014 of accuracy) and 449 

ANN (81.4%±0.010 of sensitivity, 78.4%±0.012 of specificity and 79.9%±0.011 of  accuracy). 450 

 451 

TABLE 5 | Result of Statistical significance of Tukey−Kramer HSD in pairwise comparison 452 

One-way ANOVA was used to compare the four classifiers (ANN, BNN, DBN and sparse-DBN) and 453 

the resultant p-value was 9.3666e-07. This p-value corresponding to the F-statistic of one-way 454 

ANOVA is much lower than 0.05, suggesting that one or more classifiers are significantly different 455 

for which Tukey’s HSD test (Tukey−Kramer method) was used to detect where the differences were. 456 

The critical value of the Tukey−Kramer HSD Q statistic based on the four classifiers and v = 8 457 

degree of freedom for the error term, were significance levels of α = 0.01 and 0.05 (p-value). The 458 

critical value for Q, for α of 0.01 (Q
α=0.01

) is 6.2044 and the critical value for Q for α of 0.05 (Q
α=0.05

) 459 

is 4.5293. The Tukey HSD Q-statistic (Qi,j) values were calculated for pairwise comparison of the 460 

classifiers. In each pair, the statistical significance is found when Qi,j is more than the critical value of 461 

Q. TABLE 5 presents the Tukey HSD Q-statistic (Qi,j) and Tukey HSD p-value and Tukey HSD 462 

inference of the pairwise comparisons. The results in TABLE 5 show all six pairwise combinations 463 

reached statistical significance (*p<0.05 and **p<0.01). In addition, to compare the proposed 464 

classifier (sparse-DBN) and other classifiers (DBN, BNN, ANN), the sparse-DBN vs. DBN resulted 465 

in a p-value of 0.021 (*p<0.05), while sparse-DBN vs. BNN and sparse-DBN vs. ANN resulted in a 466 

p-value of 0.001 (**p<0.01). 467 

Overall, the combination of the AR feature extractor and sparse-DBN achieved the best result with 468 

improved sensitivity, specificity and accuracy for the classification fatigue vs. alert states in a 469 

simulated driving scenario. 470 

 471 

FIGURE 6 | ROC plot with AUC values for AR feature extractor and ANN, BNN, DBN and 472 

sparse-DBN classifiers of early stopping (hold-out cross-validation) technique. 473 

FIGURE 7 | ROC plot with AUC values for AR feature extractor and ANN, BNN, DBN and 474 

sparse-DBN classifiers of k-fold cross validation (k=3) technique. 475 

 476 

FIGURE 6 shows the results displayed in the receiver operating characteristic (ROC) curve analyses 477 

with AR feature extractor and ANN, BNN, DBN and sparse-DBN classifiers of early stopping (hold-478 

out cross-validation) techniques. The ROC graph is a plot of true positive rate or sensitivity (TPR) on 479 

the Y axis and false positive rate (FPR) or 1 specificity on the X axis by varying different threshold 480 
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ratios as the sweeping variable. A random performance of a classifier would have a straight line 481 

connecting (0, 0) to (1, 1). A ROC curve of the classifier appearing in the lower right triangle suggest 482 

it performs worse than random guessing and if the ROC curve appears in the upper left, the classifier 483 

is believed to have a superior performance classification (Huang and Ling, 2005; Castanho et al., 484 

2007). All ROC curves in FIGURE 6 for ANN, BNN, DBN and sparse-DBN classifier shows the 485 

curves plotted in the upper left or above random guess classification. The result also shows that the 486 

ROC curve for sparse-DBN classifier achieved the best upper left curve compared to DBN, BNN and 487 

ANN. 488 

The areas under the curve of ROC (AUROC) were also computed to evaluate quantitatively the 489 

classification performance. AUROC represents the probability that the classifier will rank a randomly 490 

chosen positive example higher than a randomly chosen negative example, and it exhibits several 491 

interesting properties compared to accuracy measurement (Huang and Ling, 2005). The AUROC 492 

value lies between 0 and 1 with a higher AUROC value indicating a better classification 493 

performance. Fig. 6 shows that the classifier using sparse-DBN and AR feature extractor achieved 494 

the best performance result with the highest AUROC of 0.9624 compared to original DBN classifier 495 

with AUROC of 0.9428, BNN classifier with AUROC 0.8725 and conventional ANN with AUROC 496 

of 0.8306. 497 

FIGURE 7 shows the results displayed in the receiver operating characteristic (ROC) curve analyses 498 

with AR feature extractor and ANN, BNN, DBN and sparse-DBN classifiers of k-fold cross-499 

validation (3 folds) technique with three subplots for each fold. Similar with the ROC plot from the 500 

hold-out cross validation technique, all ROC curves in FIGURE 7 for ANN, BNN, DBN and sparse-501 

DBN classifier shows the curves plotted in the upper left or above random guess classification, and 502 

the ROC curve for the sparse-DBN classifier again had best upper left curve compared to DBN, BNN 503 

and ANN. For the area under the curve analysis, in first fold (k=1), sparse-DBN achieved the best 504 

AUROC of 0.9643 compared to DBN classifier with AUROC of 0.9484, BNN classifier with 505 

AUROC of 0.8879 and ANN classifier with AUROC of 0.8419. For second fold (k=2), the sparse-506 

DBN achieved the best AUROC of 0.9673 compared to DBN classifier with AUROC of 0.9520, 507 

BNN classifier with AUROC of 0.8968 and ANN classifier with AUROC of 0.8458. For third fold 508 

(k=3), the sparse-DBN achieved the best AUROC of 0.9627 compared to DBN classifier with 509 

AUROC of 0.9434, BNN classifier with AUROC of 0.8858 and ANN classifier with AUROC of 510 

0.8372. 511 

Our previous work in (Chai et al., 2016) showed a promising result with the inclusion of an 512 

additional pre-processing component using a recent independent component analysis (ICA) 513 

algorithm, AR feature extractor and BNN classifier. However, it was concluded that the performance 514 

of the classification needed to be improved. The findings presented in this paper, strongly suggests 515 

that the use of an AR feature extractor provides superior results compared to PSD method, and also 516 

extends further the study by improving the reliability including the sensitivity, specificity and 517 

accuracy using sparse-DBN classifier in combination with the AR feature extractor, even without the 518 

need to include the ICA pre-processing component. 519 

TABLE 6 | Comparison of the training time and testing time for different classifiers 520 

Using chosen classifier parameters, TABLE 6 shows the comparison of computation times between 521 

the proposed classifier (sparse-DBN) and other classifiers (ANN, BNN and DBN). The 522 

computational time is estimated using the MATLAB tic/toc function, where the tic function was 523 

called before the program and the toc function afterward on the computer (Intel Core i5−4570 524 
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processor 3.20 GHz, 8-GB RAM). The result shows that for the training time, the sparse-DBN 525 

required 169.23±0.93s which was slower compared to other classifiers (86.79±0.24s for DBN, 526 

55.82±2.77s for BNN and 24.02±1.04 for ANN). In terms of the testing (classification) time, all 527 

classifiers required the same amount of time of 0.03s or less than a second to complete the task. 528 

Although the proposed sparse-DBN required more time to complete the training process, the 529 

classifier was able to perform as fast as other classifiers during the testing process. The reason that 530 

the testing times of the classifier are comparable to each other was because, after the training process, 531 

the final weights were used as constants and in the classification process all classifiers used the same 532 

ANN feed-forward classification routine.  For the operation of real-time classification, there is no 533 

necessity to perform the classifier training again. The classifier just needs to compute the feed 534 

forward ANN routine with the saved weight parameters. Thus, sparse-DBN classification time in the 535 

runtime mode (execution) is fast, taking less than a second. 536 

The potential future direction of this research includes:  (i) real-time driver fatigue with the active 537 

transfer learning approach for new user adaptation (Wu et al., 2014; Marathe et al., 2016; Wu, 2016), 538 

(ii) improvement of the classification result through an intelligent fusion algorithm, and (iii) testing 539 

the efficacy of hybrid driver fatigue detection systems using a combination of physiological 540 

measurement strategies known to be related to fatigue status, such as brain signal measurement using 541 

electroencephalography (EEG), eye movement and facial tracking systems using camera and 542 

electrooculography (EOG) and heart rate variability measurement using electrocardiography (ECG).  543 

 544 

5 Conclusions 545 

In this paper, the EEG-based classification of fatigue vs. alert states during a simulated driving task 546 

was applied with 43 participants. The AR was used for feature extractor and the sparse-DBN was 547 

used as a classifier. For comparison, the PSD feature extractor and ANN, BNN, original DBN were 548 

included. 549 

Using the early stopping (hold-out cross validation) evaluation, the results showed that for a PSD 550 

feature extractor, the sparse-DBN classifier achieved a superior classification result (sensitivity at 551 

87.9%, specificity at 81.7% and accuracy at 84.8%) compared to the DBN classifier (sensitivity at 552 

83.5%, specificity at 79.6% and accuracy at 81.6%), BNN classifier (sensitivity at 77.2%, specificity 553 

at 75.6% and accuracy at 76.4%) and ANN classifier (sensitivity at 74.8%, specificity at 69.9% and 554 

accuracy at 72.3%). Further, using an AR feature extractor and the sparse-DBN achieves a 555 

significantly superior classification result (sensitivity at 93.9%, specificity at 92.3% and accuracy at 556 

93.1% with AUROC at 0.96) compared to DBN classifier (sensitivity at 90.8%, specificity at 90.4% 557 

and accuracy at 90.6% with AUROC at 0.94), BNN classifier (sensitivity at 84.3%, specificity at 558 

83% and accuracy at 83.6% with AUROC at 0.87) and ANN classifier (sensitivity at 80.8%, 559 

specificity at 77.8% and accuracy at 79.3% with AUROC at 0.83). 560 

Overall the findings strongly suggest that a combination of the AR feature extractor and sparse-DBN 561 

provides a superior performance of fatigue classification, especially in terms of overall sensitivity, 562 

specificity and accuracy for classifying the fatigue vs. alert states. The k-fold cross-validation (k=3) 563 

also validated that the sparse-DBN with the AR features extractor is the best algorithm compared to 564 

the other classifiers (ANN, BNN and DBN), confirmed by a significance of a p-value < 0.05.  565 

It is hoped these results provide a foundation for the development of real-time sensitive fatigue 566 

countermeasure algorithms that can be applied in on-road settings where fatigue is a major 567 
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contributor to traffic injury and mortality (Craig et al., 2006; Wijesuriya et al., 2007). The challenge 568 

for this type of technology to be implemented will involve valid assessment of EEG and fatigue 569 

based on classification strategies discussed in this paper, while using an optimal number of EEG 570 

channels (that is, the minimum number that will result in valid EEG signals from relevant cortical 571 

sites) that can be easily applied. These remain the challenges for detecting fatigue using brain signal 572 

classification. 573 
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 726 

TABLE 1 | Testing several values of regularization constant (λ) and the constant controlling the 727 

sparseness (p) in order to select values with the lowest MSE (trial-and-error method) 728 

Regularization 

constant(λ) 

Sparseness 

constant (p) 

MSE 

training 

MSE 

validation 

Iteration 

number 

0.5 0.1 0.00492 0.06625 90 

1 0.1 0.00680 0.06710 82 

2 0.1 0.00676 0.07961 64 

0.5 0.01 0.00542 0.07365 66 

1 0.01 0.00507 0.08360 71 

2 0.01 0.00395 0.06831 85 

0.5 0.02 0.00288 0.07664 73 

1 0.02 0.00119 0.05206 69 

2 0.02 0.00288 0.07181 66 

0.5 0.03 0.00327 0.08289 88 

1 0.03 0.00574 0.09207 73 

2 0.03 0.00665 0.09825 89 

     

Mean  0.004629 0.07615 76.42 

SD  0.001803 0.01269 9.72 

 729 

 730 

 731 

 732 

TABLE 2 | The best MSE and iteration numbers from the training of the classifiers (ANN, 733 

BNN, DBN and Sparse-DBN) 734 

Classifiers Best MSE 
Best Iteration 

Number 

ANN 0.115 110 

BNN 0.0979 77 

DBN 0.0649 68 

Sparse-DBN 0.0520 69 

 735 

 736 

 737 

 738 
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 739 

TABLE 3 | Results classification fatigue state versus alert state for the test set on different 740 

feature extractors and classifiers – early stopping approach 741 

Feature 

Extraction 

Methods: 

Classification 

Results 

Classification Methods: 

ANN BNN DBN 
Sparse-

DBN 

PSD 

TP 782 808 873 919 

FN 264 238 173 127 

TN 731 791 833 855 

FP 315 255 213 191 

Sensitivity (%) 74.8% 77.2% 83.5% 87.9% 

Specificity (%) 69.9% 75.6% 79.6% 81.7% 

Accuracy (%) 72.3% 76.4% 81.5% 84.8% 

 

AR 

TP 845 882 950 982 

FN 201 164 96 64 

TN 814 868 946 965 

FP 232 178 100 81 

Sensitivity (%) 80.8% 84.3% 90.8% 93.9% 

Specificity (%) 77.8% 83.0% 90.4% 92.3% 

Accuracy (%) 79.3% 83.6% 90.6% 93.1% 

 742 

 743 

 744 

TABLE 4 | Results of classification accuracy fatigue state versus alert state with chosen AR 745 

feature extractors and different classifiers – k-fold cross validation (3 folds) approach 746 

Classification 

Results 

Classification Methods: 

ANN 

(Mean±SD) 

BNN 

(Mean±SD) 

DBN 

(Mean±SD) 

Sparse-DBN 

(Mean±SD) 

TP 852.0±10.583 888.0±13.229 951.3±4.933 992±11.930 

FN 194.7±10.408 158.7±13.051 95.3±4.726 54.3±11.719 

TN 820.3±13.051 874.7±15.308 947.0±5.292 976.0±12.288 

FP 225.7±13.051 171.3±15.308 99.0±5.292 70.0±12.288 

Sensitivity 81.4%±0.010 84.8%±0.012 90.9%±0.005 94.8%±0.011 

Specificity 78.4%±0.012 83.6%±0.015 90.5%±0.005 93.3%±0.012 

Accuracy 79.9%±0.011 84.2%±0.014 90.7%±0.005 94.1%±0.011 

 747 

 748 

 749 
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 750 

TABLE 5 | Result of Statistical significance of Tukey−Kramer HSD in pairwise comparison 751 

Pairwise 

Comparison 

Tukey HSD 

Q statistic 

Tukey HSD 

p-value 

Tukey HSD 

inference 

Sparse DBN vs. DBN  5.376 0.021 *p<0.05 

Sparse DBN vs. BNN 15.795 0.001 **p<0.01 

Sparse DBN vs. ANN 22.733 0.001 **p<0.01 

DBN vs. BNN 10.419 0.001 **p<0.01 

DBN vs. ANN 17.357 0.001 **p<0.01 

BNN vs. ANN 6.938 0.005 **p<0.01 

 752 

 753 

TABLE 6 | Comparison of the training time and testing time for different classifiers 754 

Classifiers 
Training time (s) 

(Mean±SD) 

Testing time  (s) 

(Mean±SD) 

ANN 24.02±1.04 0.0371±0.0023 

BNN 55.82±2.77 0.0381±0.0082 

DBN 86.79±0.24 0.0334±0.0016 

Sparse-DBN 169.23±0.93 0.0385±0.0043 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 
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Figure Legends 767 

 768 

 769 

FIGURE 1 | General structure EEG-based driver fatigue classification in this study 770 
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 787 

FIGURE 2 | Moving window segmentation for driver fatigue study 788 
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 804 

 805 

FIGURE 3 | Structure of sparse-DBN for driver fatigue classification: (A) Greedy learning 806 

stack of sparse-RBM; (B) the corresponding sparse-DBN. 807 
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 817 

 818 

FIGURE 4 |Plot of the training and validation MSE for early stopping of classifiers:  (A) MSE 819 

training and validation of ANN. (B) MSE training of BNN. (C) MSE training of DBN in hidden 820 

layer 1 (Generative mode). (D) MSE training of sparse-DBN in hidden layer 1 (Generative 821 

mode). (E) MSE training and validation of DBN in hidden layer 2 (Discriminative mode). (F) 822 

MSE training and validation of DBN in hidden layer 2 (Discriminative mode). 823 
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 828 

FIGURE 5 | Plot of the optimal number hidden nodes and layers 829 
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 843 

FIGURE 6 | ROC plot with AUC values for AR feature extractor and ANN, BNN, DBN and 844 

sparse-DBN classifiers of early stopping (hold-out cross-validation) technique. 845 
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 847 

FIGURE 7 | ROC plot with AUC values for AR feature extractor and ANN, BNN, DBN and 848 

sparse-DBN classifiers of k-fold cross validation (k=3) technique. 849 
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