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SUPERHARMONIC NUMBERS

GRAEME L. COHEN

Abstract. Let τ(n) denote the number of positive divisors of a natural num-
ber n > 1 and let σ(n) denote their sum. Then n is superharmonic if

σ(n) | nkτ(n) for some positive integer k. We deduce numerous properties
of superharmonic numbers and show in particular that the set of all superhar-
monic numbers is the first nontrivial example that has been given of an infinite
set that contains all perfect numbers but for which it is difficult to determine
whether there is an odd member.

1. Introduction

If the harmonic mean of the positive divisors of a natural number n > 1 is an
integer, then n is said to be harmonic. Equivalently, n is harmonic if σ(n) | nτ (n),
where τ (n) and σ(n) denote the number of positive divisors of n and their sum,
respectively. Harmonic numbers were introduced by Ore [8], and named (some 15
years later) by Pomerance [9].

Harmonic numbers are of interest in the investigation of perfect numbers (num-
bers n for which σ(n) = 2n), since all perfect numbers are easily shown to be
harmonic. All known harmonic numbers are even. If it could be shown that there
are no odd harmonic numbers, then this would solve perhaps the most longstand-
ing problem in mathematics: whether or not there exists an odd perfect number.
Recent articles in this area include those by Cohen and Deng [3] and Goto and
Shibata [5].

In [3], the following was proposed as a scheme to demonstrate the nonexistence
of odd perfect numbers:

Let P0 be the set of perfect numbers and devise a finite sequence P1, . . . , Pz of
sets of natural numbers such that

• P0 ⊂ P1 ⊂ · · · ⊂ Pz, all inclusions being strict,
• it seems to be difficult to find odd members of P1, . . . , Pz−1 as each is con-

structed, in turn,
• it can be proved that there are no odd members of Pz.

(It would be understood that the sets P1, P2, . . . must not be trivially or artificially
defined, for example by letting P1 be the union of the set of all even numbers and
the set of all perfect numbers.)

Let P1 stand for the set of harmonic numbers. In [3], it was suggested that a
candidate for P2 could be the set of all numbers n > 1 such that σk(n) | nkτ (n)
where k is a positive integer and σk(n) denotes the sum of the kth powers of the
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positive divisors of n. For such a number, the harmonic mean of the kth powers
of the divisors of n is an integer. Although a number of properties of this P2 were
obtained, the authors could not show that the inclusion P1 ⊂ P2 is strict. The
article also described other examples from the literature that could be specified as
P1, such as the set of multiperfect numbers, that is, natural numbers n > 1 for
which σ(n) = ln, for some positive integer l.

We observe at this point that there are 30 harmonic numbers up to 106, of which
just four are perfect numbers. It is not known, however, whether the set P1 of
harmonic numbers is infinite or not. In the present paper, a different generalisation
of this set P1 is given which, in stark contrast to the set P2 just described, is readily
shown to be infinite. Up to 106, it contains 3453 members, all of them even. If
it can be shown that this set contains no odd members, then it would follow that
there are no odd perfect numbers. More data will be given below.

2. Superharmonic numbers

Our new candidate for P2 is the set of superharmonic numbers: natural numbers
n > 1 for which σ(n) | nkτ (n), for some positive integer k. If n is superharmonic,
then the smallest k such that σ(n) | nkτ (n) is called the index of n, denoted by
k(n). Harmonic numbers have index 1. Table 1 gives the number of superharmonic
numbers in three intervals of length 2 · 108, counted according to their index; all
141,336 superharmonic numbers in these intervals are even. Table 2 gives the
smallest superharmonic numbers with index 1, 2, . . . , 24.

Regarding notation, roman letters always denote integers, with p and q reserved
for primes. We write vp(m) for the exponent on p in m, that is, the integer a ≥ 0
such that pa | m and pa+1 � m. It is often convenient to write pa ‖ m when
vp(m) = a.

We recall that, if n =
∏

pa represents the canonical decomposition of n into
primes, then

τ (n) =
∏

(a + 1), σ(n) =
∏

(1 + p + p2 + · · · + pa) =
∏ pa+1 − 1

p − 1
.

The functions τ and σ are multiplicative.
The definition of a superharmonic number does not provide an effective search

technique when n is very large, as in later examples (see Table 3) where we have n
around 101500, with k(n) exceeding 490. Our first result is far more useful in the
search for numerical information.

Theorem 1. Let n be a superharmonic number. Then, for each prime divisor p
of σ(n), p | nτ (n). Further, if vp(σ(n)) > vp(τ (n)), then p | n. The index of n is
given by

k(n) = max
p|σ(n)

vp(n) �=0

⌈
vp(σ(n)) − vp(τ (n))

vp(n)

⌉
.
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Table 1. The number of superharmonic numbers, counted ac-
cording to their index k, in each of the three given intervals.

k [2, 2 · 108] [109 + 1, 109 + 2 · 108] [1010 + 1, 1010 + 2 · 108]
1 81 3 0
2 6317 1062 292
3 14689 3708 1255
4 16998 4868 1773
5 15804 4997 2032
6 13524 4315 1802
7 10379 3667 1691
8 7325 3243 1297
9 4658 1940 1067

10 2857 1253 692
11 1683 880 508
12 994 690 326
13 572 268 159
14 344 183 130
15 172 152 114
16 101 105 72
17 54 28 29
18 42 23 14
19 13 21 15
20 11 8 10
21 3 0 4
22 4 3 3
23 0 7 2

Totals 96625 31424 13287

Proof. The first two statements follow from the definition of a superharmonic num-
ber, since an integer k exists such that pa | nkτ (n) for each p, where a = vp(σ(n)).
Then also

kvp(n) + vp(τ (n)) ≥ vp(σ(n)).

Let k′(p) be the smallest k for which this holds. We set k′(p) = 0 if vp(n) = 0 and
observe that vp(n) > 0 for at least one p, since σ(n) > τ (n). Then σ(n) | nkτ (n)
provided k ≥ k′(p) for all p. The result follows. �

It is easy to see, as Ore [8] showed for harmonic numbers, that a single prime
power cannot be superharmonic. The proof by Callan [2] (see also Pomerance [9])
that the only harmonic numbers with two distinct prime factors are the even perfect
numbers does not carry through to superharmonic numbers although it would seem
to be true.

The next theorem quickly implies that there are infinitely many superharmonic
numbers.

Theorem 2. Let qj denote the jth prime (q1 = 2, q2 = 3, . . .) and put Mj =
q1q2 · · · qj . Then Mj is superharmonic for all j ≥ 2.
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Table 2. The smallest superharmonic number n with index k(n).
If k(n) ≥ 25, then n > 109.

k(n) n k(n) n
1 6 = 2 · 3 13 540606 = 2 · 3 · 11 · 8191
2 30 = 2 · 3 · 5 14 344022 = 2 · 3 · 7 · 8191
3 102 = 2 · 3 · 17 15 2309862 = 2 · 3 · 47 · 8191
4 186 = 2 · 3 · 31 16 786426 = 2 · 3 · 131071
5 1146 = 2 · 3 · 191 17 4718586 = 2 · 3 · 786431
6 762 = 2 · 3 · 127 18 3145722 = 2 · 3 · 524287
7 8022 = 2 · 3 · 7 · 191 19 33030102 = 2 · 3 · 7 · 786431
8 5334 = 2 · 3 · 7 · 127 20 22020054 = 2 · 3 · 7 · 524287
9 35526 = 2 · 3 · 31 · 191 21 146276166 = 2 · 3 · 31 · 786431

10 23622 = 2 · 3 · 31 · 127 22 97517382 = 2 · 3 · 31 · 524287
11 145542 = 2 · 3 · 127 · 191 23 599260422 = 2 · 3 · 127 · 786431
12 49146 = 2 · 3 · 8191 24 399506694 = 2 · 3 · 127 · 524287

Proof. The number 2 is not superharmonic and the number 2 · 3 is (see Table 2).
For j ≥ 3, consider the quotient

θ =
Mk

j τ (Mj)
σ(Mj)

=
(2 · 3q3q4 · · · qj)k · 2j

σ(2 · 3q3q4 · · · qj)

=
(2 · 3q3q4 · · · qj)k

3 · 3 + 1
22

q3 + 1
2

q4 + 1
2

· · · qj + 1
2

,

where we have used the multiplicativity of τ and σ. Every prime divisor of the
denominator is less than qj and hence the denominator divides Mk

j for suitably
large k. For such k, θ is an integer, so Mj is superharmonic. �
Corollary 3. There are infinitely many superharmonic numbers. Furthermore, the
set {k(n) : n superharmonic} of all possible indices is infinite.

Proof. There are infinitely many superharmonic numbers because there are infin-
itely many prime numbers. Moreover, there are infinitely many primes congruent
to 3 (mod 4), so v2(σ(Mj)) increases indefinitely with j. Then k must be increas-
ingly large, as j increases, to allow θ to be an integer. This implies the second
statement of the corollary. �

To illustrate the growth of k(Mj) with j, its values are given in Table 3 for
2 ≤ j ≤ 40 and 493 ≤ j ≤ 500. The sequence

{
k(Mj)

}
j≥2

is necessarily increasing,
but Table 3 shows that it is not strictly increasing.

The following result shows that every natural number divides a superharmonic
number. This provides a second proof that there are infinitely many such numbers.

Theorem 4. For any natural number N , there exists a superharmonic number
which is a multiple of N .

Proof. Set N0 = N if N is even and N0 = 2N if N is odd. Suppose N0 is not
superharmonic. Let p1 be the smallest prime such that p1 | σ(N0) and p1 � N0; put
N1 = N0p1. Let p2 be the smallest prime such that p2 | σ(N1) and p2 � N1; put
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Table 3. The index k(Mj) of Mj , the product of the first j primes,
for 2 ≤ j ≤ 40 and 493 ≤ j ≤ 500.

j k(Mj) log10(Mj) j k(Mj) log10(Mj) j k(Mj) log10(Mj)
2 1 0.778 18 15 23.069 34 33 55.001
3 2 1.477 19 16 24.895 35 33 57.174
4 2 2.322 20 18 26.747 36 35 59.353
5 3 3.364 21 18 28.610 37 35 61.549
6 3 4.478 22 21 30.508 38 36 63.761
7 5 5.708 23 22 32.427 39 38 65.984
8 5 6.987 24 22 34.376 40 38 68.222
9 6 8.348 25 22 36.363 ...

10 7 9.811 26 22 38.367 493 486 1494.895
11 10 11.302 27 24 40.380 494 486 1498.443
12 10 12.870 28 25 42.409 495 487 1501.992
13 10 14.483 29 25 44.447 496 487 1505.541
14 11 16.117 30 25 46.500 497 488 1509.091
15 14 17.789 31 31 48.604 498 488 1512.642
16 14 19.513 32 32 50.721 499 490 1516.194
17 15 21.284 33 32 52.858 500 491 1519.746

N2 = N1p2. Let p3 be the smallest prime such that p3 | σ(N2) and p3 � N2, and
continue in this fashion until the process ends with a prime pj such that pj | σ(Nj−1)
and pj � Nj−1. This end will occur when all prime divisors of σ(pj) = pj + 1, being
less than pj , occur among p1, . . . , pj−1 and the prime divisors of N0. Note that
2 � p1p2 · · · pj . Put Nj = Nj−1pj and consider the quotient

θ =
Nk

j τ (Nj)
σ(Nj)

=
(N0p1p2 · · · pj)k · 2jτ (N0)

σ(N0p1p2 · · · pj)

=
(N0p1p2 · · · pj)kτ (N0)

σ(N0)
p1 + 1

2
p2 + 1

2
· · · pj + 1

2

.

We have again used the multiplicativity of τ and σ. By construction, every prime
factor of the denominator divides N0p1p2 · · · pj so that, for suitably large k, the
numerator of θ is divisible by its denominator. For such k, θ is an integer, so Nj is
superharmonic. �

3. Odd superharmonic numbers

There are infinitely many superharmonic numbers, and all of those known to date
are even. Furthermore, there are infinitely many superharmonic numbers that are
squarefree, that is, not divisible by p2 for any prime p, as is clear from Theorem 2.
But, as we show below, no odd superharmonic number, if there is one, can be
squarefree. Ore [8] proved the corresponding result for harmonic numbers long ago.
Another long-established result for harmonic numbers, due to Garcia [4], is that
if n is odd and harmonic and pa ‖ n, then pa ≡ 1 (mod 4). These properties for
superharmonic numbers are given in the following theorem.
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Theorem 5. Let N be an odd superharmonic number. Then (i) N cannot be
squarefree, (ii) if pa ‖ n, then pa ≡ 1 (mod 4).

Proof. (i) Suppose N = p1p2 · · · pj for odd primes p1 < p2 < · · · < pj . Consider
the quotient

θ =
Nkτ (N)

σ(N)
=

(p1 · · · pj)k · 2j

σ(p1 · · · pj)
=

(p1 · · · pj)k

p1 + 1
2

· · · pj + 1
2

.

The prime factors of (p1 + 1)/2 are less than p1, so the denominator cannot be
a factor of the numerator, for any k. Then θ cannot be an integer, so N is not
superharmonic.

(ii) Suppose pa �≡ 1 (mod 4), so that p ≡ 3 (mod 4) and a is odd. Write
a = 2jb − 1, where b ≥ 1 is odd and j ≥ 1, and consider the factorisation

σ(pa) =
pa+1 − 1

p − 1
=

(pb)2
j − 1

p − 1

=
pb − 1
p − 1

(pb + 1)(p2b + 1)(p22b + 1) · · · (p2j−1b + 1).

Since pb ≡ 3 (mod 4), this implies that v2(σ(pa)) ≥ j + 1, whereas v2(τ (pa)) = j.
On the other hand, if pa ≡ 1 (mod 4), then v2(σ(pa)) = v2(τ (pa)). So v2(σ(N)) >
v2(τ (N)) if pa ≡ 3 (mod 4) for at least one prime factor p of N . In that case,
nkτ (N)/σ(N) cannot be an integer, for any k, so N is not superharmonic. The
result follows. �

Ore’s proof of the harmonic version of (i) was different from the above. By his
approach, he was able to show further that the only squarefree harmonic number,
odd or even, is 6. Of course, that does not extend to superharmonic numbers. The
proof given here of (ii) is essentially Garcia’s.

As one consequence of Theorem 5, not previously noted for harmonic numbers,
we have the following. The proof is omitted.

Corollary 6. Suppose p2M is an odd superharmonic number, where M is square-
free and not divisible by the prime p. Then p ≡ ±1 (mod 12).

4. Conclusion. Thoughts on odd perfect numbers

To return to the scheme outlined in the Introduction, let P1 be the set of har-
monic numbers and P2 the set of superharmonic numbers. The earlier attempt,
in [3], to find a nontrivial set that extends P1, yet for which there seem to be no
odd members, was not satisfactory for the more general purpose, nor are such ex-
tensions as the set of natural numbers n > 1 for which σ(n) | nτ2(n), since 3 is
a member of this set. Superharmonic numbers were arrived at by wondering first
about numbers n > 1 for which σ(n) | n2τ (n).

The set P0 of perfect numbers may well be infinite. Realistically, this depends
on showing that the set of Mersenne primes (primes of the form 2p − 1) is infinite.
It is unlikely that any other approach could be used to show that P1 is infinite,
also. So the fact that P2 is provably infinite is a bonus.

What about the density of P2? The density of a set P is

δP = lim
x→∞

NP (x)
x

,
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if the limit exists, where x is a real variable and NP (x) is the number of elements
of P not exceeding x. It was shown by Kanold [6] that P1 has zero density, but
a similar argument does not carry through to P2 (nor to the set of superharmonic
numbers of index k, for any given k > 1), but see the Appendix. The preferred
next step in this scheme is to seek P3, such that P2 ⊂ P3, P3 has no apparent odd
members, and δP2 < δP3 .

Compared to superharmonic numbers, the tighter definition of odd perfect num-
bers allows more to be determined regarding their prime factor decomposition, if
there is such a number. In place of Theorem 5, it has long been known that an odd
perfect number must have the form pb0

0 p2b1
1 p2b2

2 · · · p2bt
t , where p0 ≡ b0 ≡ 1 (mod 4).

Furthermore, Nielsen [7] has recently proved that t ≥ 8, the first improvement on
that bound for more than 25 years, and since 1991 it has been known that there
are no odd perfect numbers below 10300 (Brent et al. [1]). Anything at all close to
such results for odd superharmonic numbers, or odd harmonic numbers, would be
very difficult.

Searches for odd perfect numbers, and more generally for a multiperfect num-
ber n (even or odd), must make use of the fact that the set of prime factors of σ(n)
must almost coincide with the set Q of prime factors of n itself; in particular, if
pa ‖ n, then the prime factors of σ(pa) mostly must remain within Q. The proofs
of most of the theorems in this paper depend essentially on the same requirement.
That is, the likelihood of finding an odd superharmonic number would seem to be
about the same as that of finding an odd perfect number.

5. Appendix

I am grateful to the referee of this paper for the following theorem.

Theorem 7. The set P2 of superharmonic numbers has density zero.

Proof. We must show that δP2 = 0 or, equivalently, NP2(x) = o(x) as x → ∞. For
any set P , write #{n ≤ x : n ∈ P} for NP (x), with variations on this notation that
will be obvious. Let P+(n) denote the largest prime factor of an integer n ≥ 2, and
put P+(1) = 1.

Define
Ψ(x, y) = #{n ≤ x : P+(n) ≤ y}, x ≥ y ≥ 2.

It is shown in Tenenbaum [10] that, for large x,

(1) Ψ(x, y) 
 xe−u/2,

where u = (log x)/(log y), uniformly in y. Setting y = exp((log x)2/3), it follows
that Ψ(x, y) = o(x), so to prove that δP2 = 0 it suffices to show that

#{n ≤ x : n ∈ P2, P+(n) > y} = o(x).

Moreover, since

#{n ≤ x : q = P+(n) > y, q2 | n} ≤
∑

y<q≤x

∑
n≤x
q2|n

1 

∑
q>y

x

q2

 x

y
,

it suffices to show that

#{n ≤ x : n ∈ P2, q = P+(n) > y, q ‖ n} = o(x).
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In fact, it it is enough to show that

(2) #{n ≤ x : n ∈ P2, q = P+(n) > y, q ‖ n, P+(q + 1) > z} = o(x),

where z = exp((log x)1/3). To see why, observe that

#{n ≤ x : q = P+(n) > y, q ‖ n, P+(q + 1) ≤ z} ≤
∑

y<q≤x
P+(q+1)≤z

∑
n≤x
q‖n

1

≤ x
∑

y<q≤x
P+(q+1)≤z

1
q

 x

∑
y<n≤x

P+(n)≤z

1
n

.

By partial summation, the last sum is∫ x

y

dΨ(u, z)
u

=
Ψ(x, z)

x
− Ψ(y, z)

y
+

∫ x

y

Ψ(u, z)
u2

du,

and, using the bound in (1), each term on the right is easily seen to be o(1) as
x → ∞. Thus, we need only prove (2).

Let n lie in the subset of P2 indicated in (2). Write n = qm, where q = P+(n),
so q � m, and put r = P+(q + 1). Then, we have σ(n) | nkτ (n) for some k if and
only if

(q + 1)σ(m) | 2(qm)kτ (m).

Since q and q + 1 are coprime, it follows that r | 2mkτ (m). Suppose r | τ (m).
Then pr−1 | n for some prime p, so x ≥ n > 2r−1 > 2z−1, but this is not possible
for z = exp((log x)1/3). Therefore, r � τ (m), and r �= 2, so r | m. That is,
qP+(q + 1) | n. But the number of such integers n up to x does not exceed

∑
y<q≤x

P+(q+1)>z

x

qP+(q + 1)
<

x

z

∑
y<q≤x

P+(q+1)>z

1
q

<
x

z

∑
n≤x

1
n

 x log x

z
= o(x),

which proves (2). �
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