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A Novel Extended Potential Field Controller
for Use on Aerial Robots

Alexander C. Woods, Hung M. Laf, and Quang P. Ha

Abstract—Unmanned Aerial Vehicles (UAV), commonly known
as drones, have many potential uses in real world applications.
Drones require advanced planning and navigation algorithms to
enable them to safely move through and interact with the world
around them. This paper presents an extended potential field con-
troller (ePFC) which enables an aerial robot, or drone, to safely
track a dynamic target location while simultaneously avoiding
any obstacles in its path. The ePFC outperforms a traditional
potential field controller (PFC) with smoother tracking paths and
shorter settling times. The proposed ePFC’s stability is evaluated
by Lyapunov approach, and its performance is simulated in a
Matlab environment. Finally, the controller is implemented on
an experimental platform in a laboratory environment which
demonstrates the effectiveness of the controller.

I. INTRODUCTION

HIS paper focuses on dynamic target tracking and ob-
stacle avoidance on a quadrotor drone such as the one
shown in Fig. |I} Recent advances in the field of unmanned
autonomous systems (UAS) have drastically increased the
potential uses of both unmanned ground vehicles (UGV)
and unmanned aerial vehicles (UAV). UAS can be utilized
in situations which may be hazardous to human operators
in ground vehicles or pilots in traditional aircraft, such as
assisting wild land fire fighters [1]-[5], search and rescue
operations in unsafe conditions or locations [|6]—[10]], and dis-
aster relief efforts [[11]]-[13]. Additionally, UAS can be used in
repetitive or tedious work where a human operator may loose
focus such as infrastructure inspection [14]-[16], agricultural
inspections [17], [18]], and environmental sensing [19].
Although the field of UAS has grown rapidly, it is still
hindered by many problems which limit their use in real
world applications. The challenge of localizing in GPS-denied
environments has been approached by a multitude of research
groups across the world, and there are several methods which
have been to address this. One of several promising on-board
sensing methods is light detection and ranging (LIDAR). One
group employed a reflexive algorithm in combination with a
LIDAR sensor for simulating navigation through an unknown
environment [20]. Another group developed a multilevel
simultaneous localization and mapping (SLAM) algorithm
which utilized LIDAR as its primary sensing method [21]].
Other groups used LIDAR on autonomous vehicles for control
and multi-floor navigation [22], [23]].
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Fig. 1. A quadrotor drone achieves lift by utilizing four rotors which each
produce a coupled moment about the axis of rotation. Because they only have
four actuators, quadrotors are inherently under-actuated. This makes control
a challenge, but also means they can perform very agile maneuvers which
gives them an advantage over fixed wing platforms in confined environments.

Another major area of research for localization in GPS-
denied environments is computer vision. One group used a
single camera, looking at an object of known size to determine
the drone’s location [24f]. Another group utilized a combination
of LIDAR and a Microsoft Kinect sensor to explore an
unknown environment [25]]. Several other groups successfully
used unique variations of computer vision methods as a means
of localization [26], [27], and it is proving to be a very
promising method of operating in GPS-denied environments.

In addition to advanced sensing capabilities, UAS also
require planning and navigation algorithms to safely move
through and interact with the world around them. Trajectory
generation for aerial robots has been accomplished through
methods such as minimizing snap, the second derivative
of acceleration [28], [29]. Given keyframes consisting of a
position in space coupled with a yaw angle, this method
is able to generate very smooth, optimal trajectories. Other
groups successfully applied methods utilizing Voronoi dia-
grams [24]], [30], receding horizons in relatively unrestricted
environments [31]], high order parametric curves [32]], and 3D
interpolation [33].

However, many platforms do not have the luxury of a very
powerful processor and solving complex algorithms cannot
practically be performed by an offboard computer. Therefore,
the contribution of this paper is to propose an ePFC as a
navigation method which is computationally inexpensive, can
react quickly to the environment, and which can be deployed
onboard any platform with adequate sensing capabilities. The
developed controller’s stability is evaluated, and its perfor-
mance is both simulated and demonstrated experimentally.

The remainder of this paper is organized as follows. Sec-
tion [[] provides a brief background on potential field methods,
discusses the design of the controller used in this paper,



and demonstrates the stability of the system using a Lya-
punov approach. Section [l1I] presents simulation results of the
controller implemented in a Matlab environment. Section
discusses the experimental quadrotor platform and the testing
environment. Section [V] presents experimental results, and an
evaluation of the controller’s performance. Finally, section [V]]
provides a brief conclusion, with recommendations for future
work.

II. CONTROLLER DESIGN AND STABILITY

Because of their simplicity and elegance, potential field
controllers (PFCs) are often used for navigation of ground
robots [34]-[36]. Potential fields are aptly named, because
they use attractive and repulsive potential equations to draw
the drone toward a goal (attractive potential) or push it away
from an obstacle (repulsive potential). For example, imagine
a stretched spring which connects a drone and a target.
Naturally, the spring will draw the drone to the target location.

Conveniently, potential fields for both attractive and repul-
sive forces can be summed together, to produce a field such
as the one shown in Fig. 2] This figure illustrates how a robot
can navigate toward a target location while simultaneously
avoiding obstacles in its path.
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Fig. 2. An example of a traditional potential field which can be used for
navigating toward a target while avoiding multiple obstacles.

Let us denote pg = |24, Y, 24)” and p; = [z, Y, 2] as the
position vector of drone and target, respectively. The relative
distance vector between the drone and the target is then

Pdt = [wdt, Ydt, Zdt]Ta

= [xdaydazd]T -
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Traditionally, potential forces work in the x, y, and z spatial
dimensions, and are defined by a quadratic function given by

Uatt(pdvpt) */\1||pdt|| 2

where A1 is positive scale factor, and ||pg|| is the magnitude of
the relative distance between the drone and the target, which
is given by

Ipacll = V/(@ae)? + (yar)? + (2ar)?- 3)

As shown in Fig. [2] the target location is always a minimum
of the overall potential field. Therefore, in order to achieve
the target location, the UAS should always move “downbhill.”
The direction and magnitude of the desired movement can
be computed by finding the negative gradient of the potential
field, given by

vg" (P pe) = —VUart(par), @
= —A1(pa — 1),
where v4'" is the desired velocity due to the attractive position
potential.

This is the classic form of a simple attractive potential
field controller. However, this does not yet take into account
obstacles or other sources of repulsive potential. The repulsive
potential is proportional to the inverse square of the distance
between the drone and the obstacle and is given by
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where 7; is positive scale factor, and ||pg,|| is the magnitude
of the relative distance between the drone and the obstacle.

To find the desired velocity, we again take the gradient of
the potential field which yields
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where v}, is the desired velocity due to the repulsive posi-

tion potential. A complete traditional potential field controller
is the sum of (@) and (6) which yields
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where n is the number of obstacles present in the environment.

This controller enables a ground robot to track stationary
or dynamic targets, while avoiding any obstacles in its path.
However, when applied to an agile, aerial system such as a
quadrotor, the controller’s performance is quite poor as shown
in simulations presented in Section

To adapt potential field methods for use on an aerial
robot, this paper presents an extended potential field controller
(ePFC) which utilizes the same concepts found in a traditional
PFC, but applied to relative velocity rather than position. If we
consider that we are tracking a dynamic target, then the desired
velocity will be that of the target. In this case, the attractive
potential will be defined as the quadratic function given by

1
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where Az is positive scale factor, and ||vg:|| is the magnitude
of the relative velocity between the drone velocity, vy, and the
target velocity, vy, which is given by

vaell = v/ (Eae)? + (Jar)? + (Zar)?- ©)

As in the traditional potential field controller, we wish to
minimize the relative velocity potential thus resulting in a



matched velocity between the drone and the target. Similar
to the traditional controller, we find the desired velocity of
the drone by calculating the negative gradient, which we find
to be
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The repulsive velocity potential between the drone and an
obstacle is given by
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Urep(vdavo) = |27 (11)
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where 7, is positive scale factor, and ||vg,||? is again the
magnitude of the relative velocity between the drone velocity,
vg, and the obstacle velocity, v,. The corresponding velocity
for this potential function is found by
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Summing the velocities in (I0) and (I2) with the traditional
controller yields the full form of the extended potential
field controller (ePFC), which is

Z (13)
llvgoI®

Finally, the velocity found in (I3) must be transformed into
the body coordinate system of the drone and is found to be

n i
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where 1) is the yaw angle of the drone around the body z axis.

To analyze the convergence of the proposed velocity con-
troller for the drone, we use the Lyapunov theory. We can
choose a Lyapunov function as follows:

1 1
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This function is positive definite, and the derivative of L is
given by
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where ag4; is the relative acceleration between the drone
acceleration and the target acceleration.

Note that the relative velocity between the drone and the
target is designed following the direction of negative gradient

of Uat(par) with respect to pge as in @). From (10), we can
obtain
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where A; is a time step. Hence, substituting vg; given by
and agq given by into we obtain
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We can easily see that L < 0 since |pa| and
| %@H are positive. This mean that the proposed
drone Velocity controller is stable, or the drone is able to
follow/track a moving target.

A comparison between the traditional controller and the
extended form is provided in Section using simulations.
Section [V] presents the experimental results of implementing

the ePFC on a drone in an actual testing environment.

III. SIMULATION

In order to validate the developed controller, the system
was simulated using a Matlab Simulink model. The state
space representation of the ARDrone’s platform dynamics
are take from the ARDrone Simulink Development Kit [37].
The complete Simulink model shown in Fig. 3] demonstrates
how the ePFC controller uses feedback information from the
ARDrone simulation and position estimator blocks. The output
of the ARDrone simulation block is simply the velocity of the
drone, and the position estimator uses an integrator with zero
initial conditions to calculate position.

The desired path that the drone is to take is outlined in
Table [II A virtual obstacle is placed at (1,1) which places it
immediately in the path of the drone between waypoints 2 and
3. The drone is allowed two seconds at each waypoint in an
attempt to let it settle before moving on to the next waypoint.

First, a traditional potential field controller was simulated,
and the resulting path is shown in Fig. ] The performance
of the traditional PFC was poor as expected, because aerial
drones have very different dynamics than their ground coun-
terparts. Using the traditional PFC, the drone overshoots the
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Fig. 3. The Simulink model used includes a state space representation from the ARDrone Simulink Development Kit, as well as custom blocks for the ePFC

controller described in this work.

TABLE I
SIMULATION WAYPOINTS

Waypoint X Coordinate [m] Y Coordinate [m]
1 2.5 -1
2 2.5 1
3 2.5 1
4 2.5 -1

desired waypoint, and while it does avoid the obstacle at
(1,1) it is not by much. The drone completed a full loop
in approximately 35 seconds.

Next, the ePFC is tested using the same path and obstacle
position. The results shown in Fig. [5]demonstrate the effective-
ness of the new controller. The drone does not overshoot the
desired waypoints and avoids the obstacle by a larger margin,
while completing the course in a shorter amount of time than
the traditional controller.

As outlined in Table [[I, the ePFC controller has zero over-
shoot, and has a settling time of approximately five seconds.
This is a large improvement over the traditional controller
which overshoots by up to 19% and takes nearly six seconds
to settle. It is clear that the proposed controller is more
appropriate for use on an aerial drone than the traditional PFC.

In addition to the comparison between the tradition PFC and
the ePFC, a more complex simulation was performed which
included several obstacles placed at random throughout the
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Fig. 4. A traditional PFC is simulated on the ARDrone, with poor results.
Because drones cannot stop instantaneously like ground robots, the drone often
overshoots the desired waypoint. For reference, the drone takes approximately
35 seconds to complete a full loop of the course.

TABLE I
SIMULATION CONTROLLER EVALUATION

Controller Overshoot [%] Settling Time [sec]
Traditional PFC >19% 6
ePFC 0% 5

environment. The results shown in Fig. [ demonstrate the that
the ePFC is very effective in multi-obstacle scenarios, and
it successfully navigates between waypoints without colliding
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Fig. 5. Using the extended potential field controller (ePFC), the drone is able
to complete the course without overshooting the target waypoints, and avoids
the obstacle by a larger margin than the traditional controller. Because the
drone does not overshoot the target, it is able to complete the course in a
shorter amount of time compared to the traditional controller.

5.5 Multiple Obstacle Scenario - ePFC
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Fig. 6. A more complex simulation was performed with multiple obstacles
placed throughout the environment. The drone is able to successfully navigate
between waypoints without colliding with a single obstacle, thus demonstrat-
ing its effectiveness in multi-obstacle scenarios.

with a single obstacle.

IV. EXPERIMENTAL SETUP

The experimental platform chosen to implement the ePFC is
the ARDrone 2.0 quadrotor. This platform was chosen for its
ease of communication - over a wifi connection - as well as the
safety provided by the foam hull. Additionally, the ARDrone
requires little to no setup and spare parts are readily available
in case of crashes. The ARDrone 2.0 can be equipped with a
1500 mAh battery which yields flight times up to 18 minutes.
Large batteries and long flight times are very advantageous in a
testing environment because it allows for more uninterrupted
tests and less downtime recharging batteries. The ARDrone
2.0 is also equipped with a 1GHz 32 bit ARM Cortex A8
processor, 1 GB DDR2 RAM, and runs Linux. This means
that the developed controller can be implemented onboard the
drone in future work.

Sixteen Motion Analysis Kestrel cameras located through-
out the testing space provide the position and orientation of
the drone, target (if not virtual), and any obstacles present.
The Cortex software suite provides a visual representation of

Cameras

Fig. 7. The Motion Analysis Cortex software gives the user a real-time,
visual 3D representation of the environment including camera locations and
any objects sensed by the system [38§].

the environment as shown in Fig. [/] as well as sending data
over a network connection for use by external programs.

The overview of the experimental setup shown in Fig.
demonstrates the feedback loop implemented. The Motion
Analysis external tracking system is used for external local-
ization of the drone and obstacles in real time. The position
information is used by the same Simulink model shown
in Section [l which controls the ARDrone over a wireless
connection.

V. EXPERIMENTAL RESULTS

Having validated the controller using the Simulink sim-
ulation, it was then implemented on the actual ARDrone.
Because the simulation showed a clear improvement in per-
formance between the tradition PFC and the developed ePFC,
the traditional controller was not tested on the experimental
platform. Instead, the ePFC was immediately used to perform
the a similar experiment to the one which was simulated. The
general path defined by waypoints in Table [I] is implemented,
however due to size limitations of the testing space, the
rectangular path is smaller than the simulated one.

The results from the experiment shown in Fig. [9and Fig.
demonstrate that the drone successfully reaches each waypoint,
and also avoids the obstacle in its path between waypoints two
and three.

To quantify the controller performance, the error in response
to a waypoint change, or step input, is shown in Fig.
The X axis error is chosen as the worst case scenario in the
experiment, having a step input of over 2.5 meters versus only
1 meter on the Y axis.

The controller’s performance is quite good to step inputs,
with an approximate settling time of 5.5 seconds, and a percent
overshoot of only 1.8%. A comparison between the simulated
and experimental results is outlined in Table While the
experimental results do have a slightly longer settling time,
and more overshoot, this is not surprising. In a real world
application, the controller is subject to disturbances such
as ground effects from propeller wash, since the drone is
operating close to the ground and desks.
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Fig. 8. The experimental setup for this work includes a Motion Analysis
external tracking system with 16 cameras which provides the position of
the drone and obstacles in the environment. The same Simulink model used
in Section [[T] provides control commands to the ARDrone over a wireless
connection.
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Fig. 9. To test the ePFC experimentally, the drone follows waypoints similar
to those in the simulation. The drone successfully reaches each waypoint and
avoids the obstacle in its path between waypoints two and three.

Having evaluated the performance of the drone’s ability
to track targets, the obstacle avoidance functionality must be
addressed as well. As the drone approaches the obstacle, the
repulsive potential pushes the drone around it as expected. In
this experiment, the drone avoids the obstacle by a margin
of approximately 8 inches. If a larger margin is required
to accommodate and larger obstacle or drone, the repulsive
potential scale factor, 7; can simply be increased which has
the effect of making the repulsive field wider.

Avoidance
action taken

Obstacle

---- Drone Path

Fig. 10. Stills from a video demonstrate the drone taking avoidance action
while tracking moving waypoints.
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Fig. 11. The error in response to a waypoint change, or a step input, results
in a settling time of approximately 5.5 seconds and a percent overshoot of
only 1.8%. The X axis was chosen because the step input for this direction
was the largest, at over 2.5 meters, whereas the Y input is only 1 meter.

VI. CONCLUSIONS

This paper presented an extended potential field controller
(ePFC) which augments the traditional PFC with the capability
to use relative velocities between a drone and a target or
obstacles as feedback for control. Next, the stability of the
ePFC was proven using Lyapunov methods. Additionally, the
presented controller was simulated and its performance relative
to a tradition PFC was evaluated. The evaluation shows that the
ePFC performs significantly better than a traditional PFC by
reducing overshoot and settling time when navigating between
waypoints. Finally, experimental results were presented which
showed the actual performance of the controller.

Future work may include using an experimental system
with completely onboard sensing capabilities. Potentially, the
front facing camera on the ARDrone 2.0 could be used for

TABLE III
SIMULATION VS EXPERIMENTAL EVALUATION

Experiment Overshoot [%] Settling Time [sec]
Simulated ePFC 0% 5
Experimental ePFC 1.8% 55




localization using computer vision algorithms. Additionally,
the controller may be implemented onboard the drone itself.
Because the ePFC presented is not computationally intensive,
it can be implemented on nearly any drone on the market
today.
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