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Local Distinguishability of Multipartite Unitary Operations
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We show that any two different unitary operations acting on an arbitrary multipartite quantum
system can be perfectly distinguishable by local operations and classical communication when a
finite number of runs is allowed. We then directly extend this result into the case when the number
of unitary operations to be discriminated is more than two. Intuitively, our result means that the
lost identity of a nonlocal (entangled) unitary operation can be recovered locally, without any use
of entanglement or joint quantum operations.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.67.-a

Unitary operation is one of the most fundamental in-
gredients of quantum mechanics. The study of various
properties of unitary operations lies at the heart of many
quantum information processing tasks. Recently the dis-
crimination of unitary operations has received many at-
tentions [1, 2, 3, 4]. As a matter of fact, the well-known
effect of quantum super-dense coding [5] can be treated
as an instance of the discrimination of unitary opera-
tions [1, 6, 7]. Although two nonorthogonal quantum
states cannot be perfectly distinguishable whenever only
a finite number of copies are available[8, 9], it was shown
that any two different unitary operations, no matter or-
thogonal or not, can always be perfectly distinguishable
by taking a suitable entangled state as input and then
applying only a finite number of runs of the unknown
unitary operation [2, 3]. This result was further refined
by showing that the entangled input state is not neces-
sary [4]. The probabilistic discrimination of unitary op-
erations as well as general quantum operations has also
been studied extensively [10, 11, 12, 13, 14].

Up to now all the above discrimination schemes of
quantum operations assume that the unknown quantum
operation to be discriminated is under the completely
control of a single party who can prepare any entan-
gled states or perform any unconstrained quantum mea-
surements in order to achieve an optimal discrimination.
However, any reasonable quantum system in practice
generally consists of several subsystems. Nonlocal uni-
tary operations are a valuable resource to interact differ-
ent subsystems together [15, 16, 17, 18]. The problem of
distinguishing multipartite unitary operations naturally
arises when several parties share a unitary operation but
forget the real identity of the operation. Fortunately,
they do remember that the unknown unitary operation
belongs to a finite set of pre-specified unitary operations.
As in this scenario different parties may be far from each
other, a reasonable constraint on the discrimination is
that each party is only allowed to perform local oper-
ations and classical communication (LOCC). Moreover,
we assume that there is no pre-shared entanglement be-
tween any two distant parties. Here we may have two

kinds of entanglement: One is shared between distant
parties and the other is existing between different subsys-
tems of a same party. The most expensive entanglement
we are concerned with is the former and the latter can
be used in order to achieve an optimal discrimination. A
general scheme for LOCC discrimination of unitary oper-
ations is intuitively depicted as Fig. 1. Two special kinds
of schemes are of particular interests. A scheme is said
to be parallel if the computational network in Fig. 1 is
reduced to the form of U⊗N for some finite N . While it
is said to be sequential if no auxiliary quantum systems
are involved. In other words, in a sequential scheme ev-
ery party cannot employ local entanglement and can only
perform local unitary operations and projective measure-
ments on a single quantum system. Clearly, a sequential
scheme represents the most economic strategy for dis-
crimination.
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′
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FIG. 1: Illustration of LOCC discrimination of unitary opera-
tions: A bipartite example. Here U ∈ {U1, U2} represents the
unknown bipartite unitary operation. uk and vk are the local
unitary operations performed by Alice and Bob, respectively.
A general scheme for Alice and Bob to identify U is as fol-

lows: (1). Prepare suitable input states |ψ〉A1A′

1 and |ϕ〉A2A′

2

as respective input states, where A′
1 and A′

2 are the auxiliary
quantum systems of Alice and Bob, respectively; (2). Exe-
cute a finite number of runs of U and insert appropriate local
unitary operations between every two successive runs; (3).

Distinguish the final output states |ΦU 〉A1A′

1
,A2A′

2 by LOCC.
U1 and U2 can be perfectly distinguishable if and only if the
final output states |ΦU1

〉 and |ΦU2
〉 can be orthogonal [21].

The purpose of this Letter is to show that any two mul-
tipartite unitary operations can be perfectly distinguish-
able even under the constraint of LOCC. Our scheme for
discrimination is rather simple as it only involves with
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parallel scheme and sequential scheme and only requires
one party to prepare local entanglement. By similar ar-
guments as that in Refs. [2, 4], we can directly extend
this result into the case when the number of the unitary
operations to be discriminated is more than two. It is re-
markable that the lost identity of a nonlocal unitary op-
eration can be recovered locally without the assistance of
any a priori entanglement. To our knowledge, this is the
first result about the local distinguishability of multipar-
tite quantum operations. An immediate application is as
follows. Suppose several parties share an unknown uni-
tary operation which is secretly chosen from a finite set of
unitary operations, each of which is assumed to be capa-
ble of creating entanglement locally. Then these parties
can always produce pure multipartite entanglement with
certainty by employing the unknown operation shared
among them. On the other hand, the same task is not
possible if we consider the distillation of nonorthogonal
entangled states instead of unitary operations.

Obviously, the proof presented in this Letter automati-
cally provides an alternative way to show the perfect dis-
tinguishability between unitary operations in the global
scenario [2, 3, 4]. However, due to the nonlocal nature of
general multipartite unitary operations, the proof for the
local distinguishability is rather complicated and needs
lots of new techniques. For instance, the notion of nu-
merical range for a linear operation has been generalized
to multipartite setting and many interesting properties
are presented. We hope these tools would also be use-
ful in studying other problems in quantum information
theory.

Let us begin to introduce the notion of numerical
range. Consider a quantum system associated with a
finite dimensional state space H. The set of linear op-
erations acting on H is denoted by B(H). In particular,
U(H) is the set of unitary operations acting on H. Two
unitary operations U, V ∈ U(H) are said to be different
if U = eiθV cannot hold for any real number θ. For
A ∈ B(H). The numerical range (or the field of values)
of A is a subset of complex numbers defined as follows:

W (A) = {〈ψ|A|ψ〉 : 〈ψ|ψ〉 = 1}. (1)

When A is a normal operation, i.e., AA† = A†A. By
spectral decomposition theorem it is easy to verify that
W (A) = Co(σ(A)), where σ(A) represents the set of
eigenvalues of A and Co(S) denotes the convex hull of
S for S ⊆ C. In other words, the numerical range of
a normal operation is a convex polygon. Unfortunately,
no similar analytical characterization of numerical range
is known for general linear operations. Nevertheless, a
celebrated theorem due to Toeplitz and Hausdorff states
that the numerical range of a bounded linear operator is
always convex. For our purpose here, a finite dimensional
version of this theorem is sufficient [19].

Lemma 1. For any A ∈ B(H), W (A) is convex. More-
over, let {|ψk〉} be a finite set of normalized states, and
let {pk} be a probability distribution, then the state |ψ〉
such that 〈ψ|A|ψ〉 =

∑
k pk〈ψk|A|ψk〉 can be chosen as a

linear combination of |ψk〉, i.e, |ψ〉 ∈ span{|ψk〉}.

If |ψ〉 in Eq. (1) can be made entangled, then we can
define the entanglement-assisted numerical range of A as
follows:

Wa(A) = ∪H′W (A⊗ IH′), (2)

where H′ ranges over all finite dimensional state spaces.
One can verify by a direct calculation that

Wa(A) = {tr(Aρ) : ρ ≥ 0, tr(ρ) = 1}.

It follows from Lemma 1 that Wa(A) = Co(W (A)) =
W (A) for any A ∈ B(H).

Suppose now we are concerned with a multipartite
quantum system consisting of m parties, say, M =
{A1, · · · , Am}. Assume that the party Ak has a state
space Hk with dimension dk. Then the whole state
space is given by H = ⊗mk=1

Hk with total dimension
d = d1 · · · dm. We often use d1⊗· · ·⊗dm as an abbrevia-
tion for H. U ∈ U(H) is said to be local or decomposable
if U = ⊗mk=1

uk such that uk ∈ U(Hk). Otherwise U is
nonlocal or entangled. The local numerical range of A is
a subset of W (A) with the additional requirement that
|ψ〉 in Eq. (1) is a product state. That is,

W local(A) = {〈ψ|A|ψ〉 : |ψ〉 = ⊗mk=1
|ψk〉}, (3)

where |ψk〉 ∈ Hk and 〈ψk|ψk〉 = 1. The local
entanglement-assisted numerical range W local

a (A) can be
defined similar to Wa(A). A simple observation is as fol-
lows:

W local
a (A) = {tr(Aρ) : ρ = ⊗mk=1

ρk},

where ρk is a density operator on Hk. A rather surprising
result is that local entanglement cannot broaden the local
numerical range even in the multipartite scenario.

Lemma 2. For any A ∈ H, W loca
a (A) = W local(A).

Proof. The proof is a simple application of Lemma 1.
For simplicity, we only consider bipartite case. Denote
f(ψ1, ψ2) = tr(A|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|). First we observe
that f(ψ1, ψ2) = 〈ψ1|Aψ2

|ψ1〉, where Aψ2
= trH2

(AIH1
⊗

|ψ2〉〈ψ2|). So it follows from Lemma 1 and the symmetry
that f(ψ1, ψ2) is convex in |ψ1〉〈ψ1| (or |ψ2〉〈ψ2|) when
|ψ2〉〈ψ2| (resp. |ψ1〉〈ψ1|) is fixed. Hence for any density
operators ρ1 and ρ2 there should exist pure states |ψ1〉
and |ψ2〉 such that tr(Aρ1 ⊗ ρ2) = f(ψ1, ψ2). �

We shall employ a fundamental result by Walgate et

al [21] to study the local distinguishability of nonlocal
unitary operations.
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Lemma 3. (Walgate et al, [21]): Let |ψ1〉 and |ψ2〉 be
two multipartite orthogonal pure state on H. Then |ψ1〉
and |ψ2〉 are perfectly distinguishable by LOCC.

The relation between local distinguishability of unitary
operations and local numerical range now is clear. Actu-
ally, if 0 ∈W local(U †

2
U1) then there exists a product state

|ψ〉 such that U1|ψ〉 and U2|ψ〉 are orthogonal. It follows
from the above lemma that U1 and U2 can be perfectly
distinguishable by LOCC. Conversely, suppose that U1

and U2 can be discriminated by LOCC, then there ex-
ists a product state |ψ〉MM ′

= ⊗mk=1
|ψk〉

AkA
′

k such that

(UM
1

⊗ IM
′

)|ψ〉MM ′

and (UM
2

⊗ IM
′

)|ψ〉MM ′

are orthog-
onal, where A′

k is a local auxiliary system of Ak. That

is equivalent to 0 ∈ W local
a (U †

1
U2). By Lemma 2, this is

also equivalent to 0 ∈ W local(U †
1
U2). Interestingly, lo-

cal entanglement is not necessary for the perfect local
discrimination between two unitary operations.

Theorem 1. Two unitary operations U1 and U2 are per-
fectly distinguishable by LOCC in the single-run scenario
if and only if 0 ∈ W local(U †

1
U2).

For simplicity a state |ψ〉 such that 〈ψ|A|ψ〉 = 0 is
said to be an isotropic vector for A. The term isotropic

product vector is used when |ψ〉 is a product state. As

a simple application of Lemma 2, we have tr(U †
1
U2) = 0

implies that U †
1
U2 has an isotropic product state. Hence

U1 and U2 are perfectly distinguishable by LOCC with a
single run.

Unfortunately, how to determine when 0 is in the local
numerical range remains unknown even for unitary oper-
ations. Consequently, it is generally difficult to decide the
local distinguishability of nonlocal unitary operations in
the single-run scenario. Since the set of LOCC operations
is very restricted, it is not clear whether nonlocal unitary
operations remain locally distinguishable. Indeed, the
following example demonstrates that the LOCC discrim-
ination and the global discrimination of unitary opera-
tions are very different when only the single-run scenario
is considered.

Example 1. Let U1 and U2 be 2⊗ 2 unitary operations
such that U †

1
U2 = |00〉〈00|+ eiθ1 |01〉〈01|+ eiθ2 |10〉〈10| −

|11〉〈11| for 0 < θ1, θ2 < π.
On the one hand, by taking |ψ〉 = (|00〉 + |11〉)/

√
2,

we have 〈ψ|U †
1
U2|ψ〉 = 0. That implies U1 and U2 are

perfectly distinguishable by employing a maximally
entangled state as input. On the other hand, we can
easily verify that U †

1
U2 cannot have an isotropic prod-

uct state, thus U1 and U2 are locally indistinguishable. �

The above example also demonstrates that the local
numerical range is not convex in general. More precisely,
we have ±1 ∈ W local(U †

1
U2) as one can choose |ψ〉 as

|00〉 and |11〉, respectively. However, 0 = (−1 + 1)/2 6∈

W local(U †
1
U2). An interesting question is to ask for what

kind of linear operations the local numerical range re-
mains convex. The general answer to this question is
unknown. Here we would like to point out that such a
convex property does hold for Hermitian operations, for
which the local numerical range is just a complex seg-
ment.

Remarkably, if we are allowed to use the unknown mul-
tipartite unitary repeatedly, then any two different mul-
tipartite unitary operations become locally distinguish-
able. In what follows we shall present a complete proof
of this interesting fact. For the ease of presentation, the
lengthy proof is divided into two parts: Theorem 2 and
Theorem 3.

Some technical lemmas are necessary in order to
present such a proof. The following useful lemma pro-
vides an alternative characterization of Hermitian oper-
ations.

Lemma 4. Let {ρk : 1 ≤ k ≤ d2} be a Hermitian basis
for B(H). Then A ∈ B(H) is Hermitian if and only if
tr(Aρk) ∈ R for all 1 ≤ k ≤ d2.

There are many ways to choose a Hermitian basis.
Here is a simple construction based on the idea of quan-
tum process tomography [20]. Let {|k〉 : 1 ≤ k ≤ d}
be an orthonormal basis for H. For 1 ≤ p < q ≤ d, let
|ψ+

pq〉 = (|p〉 + |q〉)/
√

2 and |ψ−
pq〉 = (|p〉 + i|q〉)/

√
2. In

addition, for 1 ≤ p ≤ d let |ψpp〉 = |p〉. Then

{|ψ±
pq〉〈ψ

±
pq| : 1 ≤ p < q ≤ d} ∪ {|ψpp〉〈ψpp| : 1 ≤ p ≤ d}

is a Hermitian basis for B(H).
For a set of complex numbers {zk}, zks are co-linear

if there exists 0 ≤ θ < 2π such that zk = rke
iθ and

rk ≥ 0 for any k. Geometrically, zks are co-linear if
they lie on the same ray from the origin. The following
lemma is crucial in proving our main result. Note that
⌈x⌉ represents the minimum of the integers that are not
less than x.

Lemma 5. For A ∈ B(H), let |ψ1〉 and |ψ2〉 be two
normalized vectors such that 〈ψ1|A|ψ1〉 = r1e

iθ1 and
〈ψ2|A|ψ2〉 = r2e

iθ2 are not co-linear, where r1, r2 > 0 and
0 ≤ θ1 < θ2 < 2π. Define θ = min{θ2 − θ1, 2π + θ1 − θ2}
and N = ⌈π

θ
⌉. Then 0 ∈ W (A⊗N ), and the isotropic vec-

tor |ψ〉 can be chosen from span{|ψ1〉
⊗N−k|ψ2〉

⊗k : 0 ≤
k ≤ N}.

Proof. It is clear that 0 < θ ≤ π. To be specific, let
us assume θ1 = 0 and θ2 ≤ π. Then θ = θ2. We deal
with the following two cases separately:

Case 1: θ = π. In this case we have N = 1. Choose
0 ≤ p ≤ 1 such that pr1 − (1 − p)r2 = 0. Then we
have p〈ψ1|A|ψ1〉 + (1 − p)〈ψ2|A|ψ2〉 = 0. By Lemma 1,
0 ∈ W (A).

Case 2: 0 < θ < π. It is obvious that Nθ < 2π.
Define |Φk〉 = |ψ1〉

⊗N−k|ψ2〉
⊗k, 0 ≤ k ≤ N and zk =
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〈Φk|A
⊗N |Φk〉. We shall show that 0 ∈ Co{zk : 0 ≤ k ≤

N}. A routine calculation shows that

zk = rN−k
1

rk
2
eikθ . (4)

To complete the proof in this case, it suffices to consider
the following two subcases:

Case 2a: Nθ = π. Then we have eiNθ = −1. Similar
to Case 1, we can choose 0 ≤ p ≤ 1 such that prN

1
−

(1−p)rN
2

= 0, which immediately follows that pz0 +(1−
p)zN = 0. By Lemma 1, 0 ∈W (A⊗N ).

Case 2b. π < Nθ < 2π. By the assumption on N ,
we should have N ≥ 2 and Nθ − π < (N − 1)θ < π.
These conditions imply that for any positive real numbers
s1, s2, s3 we have 0 ∈ Co{s1, s2e

i(N−1)θ, s3e
iNθ}. By Eq.

(4), there exists p1, p2, p3 such that

p1z0 + p2zN−1 + p3zN = 0,

where
∑

3

k=1
pk = 1 and pk ≥ 0. Again, by Lemma 1, we

have 0 ∈W (A⊗N ).
In all the above cases, by the second part of Lemma

1, the state |ψ〉 such that 〈ψ|A⊗N |ψ〉 = 0 can be chosen
as a linear combination of |Φk〉. �

With Lemma 5 in hand, we can show in the following
theorem that perfect discrimination between two multi-
partite unitary operations U1 and U2 by a parallel scheme
is always possible except for a special case.

Theorem 2. Let U1 and U2 be two multipartite unitary
operations such that U †

1
U2 is non-Hermitian (up to some

phase factor). Then there exists a finite N such that 0 ∈

W local((U †
1
U2)

⊗N
). That is, U⊗N

1
and U⊗N

2
are perfectly

distinguishable using LOCC.

Proof. We only need to seek a finite N and a product
state |ψ〉 such that 〈ψ|(U †

1
U2)

⊗N |ψ〉 = 0. To simplify
the notations, we consider only the case when U1 and U2

both are bipartite unitary operations acting on H1⊗H2.
The general case can be proved similarly. Let {|ψk〉〈ψk|}
and {|ϕl〉〈ϕl|} be Hermitian basis for B(H1) and B(H2),
respectively. Then {|ψkϕl〉〈ψkϕl| is a Hermitian basis for
B(H1 ⊗H2), where 1 ≤ k ≤ d2

1
and 1 ≤ l ≤ d2

2
.

Consider d2

1
d2

2
complex numbers

zkl = 〈ψkϕl|U
†
1
U2|ψkϕl〉.

If all zkl are co-linear, then zkl = rkle
iθ for some θ ∈ R

and rkl ∈ R. Thus all e−iθzkls are real. By Lemma 4,
e−iθU †V is Hermitian. That contradicts our assumption.
So there should exist (k, l) 6= (p, q) such that zkl and zpq
are not co-linear. More precisely, let zkl = rkle

iθkl and
zpq = rpqe

iθpq , where rkl, rpq > 0 and 0 ≤ θkl, θpq < 2π.
We should have θkl 6= θpq. Consider the value of zkq. If
zkq = 0 then we can choose |ψ〉 = |ψkϕl〉 and the proof is
finished. Otherwise, write zkq = rkqe

iθkq , where rkq > 0
and 0 ≤ θkq < 2π. Since θkl 6= θpq, we should have either

θkq 6= θkl or θkq 6= θpq. Without loss of generality, let
us assume θkq 6= θpq. By Lemma 5, there exists a finite

N such that 0 ∈ W ((U †
1
U2)

⊗N ). And the isotropic state
|ψ〉 can be chosen as a linear combination of the states

|Φn〉 = |ψkϕq〉
⊗N−n|ψpϕq〉

⊗n, 0 ≤ n ≤ N.

A key observation here is that any vector from
span{|Φn〉 : 0 ≤ n ≤ N} is of the form |ψ′〉 ⊗ |ϕq〉

⊗N ,
where |ψ′〉 ∈ H⊗N

1
and |ϕq〉

⊗N ∈ H⊗N
2

. That is, |ψ〉 can
be taken as a product state. �

It is worth noting that in the above proof only one
party is required to prepare local entanglement.

However, the local discrimination between U1 and U2

such that U †
1
U2 is Hermitian has not been involved yet.

Noticing that U †
1
U2 is Hermitian, we may write U †V =

I−2P , where P is a projector satisfying tr(P ) < tr(I)/2.

The only left case for 2⊗2 is that U †
1
U2 = IH−2|Φ〉〈Φ| for

some state |Φ〉 ∈ H. Assume |Φ〉 =
√
λ|00〉+

√
1 − λ|11〉

for some 1/2 ≤ λ ≤ 1. Then we have 〈00|U †
1
U2|00〉 =

1− 2λ ≤ 0. On the other hand, we have that tr(U †V ) =

2 > 0. By the convexity of W local(U †
1
U2), we have 0 ∈

W local(U †
1
U2). Combining this with Theorem 2 we obtain

the following interesting result:

Corollary 1. Let U1 and U2 be two different 2⊗2 unitary
operations. Then there exists a finite N such that 0 ∈
W local((U †

1
U2)

⊗N ).

In other words, any two 2 ⊗ 2 unitary operations can
be locally distinguishable by a parallel scheme.

In general, we can transform the case when U †
1
U2 is

Hermitian to the non-Hermitian case by applying a se-
quential scheme. The following Lemma would be helpful
in doing this transformation.

Lemma 6. Let A and B be two Hermitian operations
acting on H such that u†AuB is Hermitian for any local
unitary u. Then tr(u†AuB) = tr(A)tr(B)/d for any local
unitary u, where d is the dimension of H.

Proof. Let f be a function defined on the set of local
unitary operations such that f(u) = tr(u†AuB). Then
for Hermitian operations A and B, f(u) ∈ R. By conti-
nuity, the set of f(u) is a real line segment or a singleton.
On the other hand, u†AuB is Hermitian implies that A
and uBu† are simultaneously diagonalizable under some
unitary operation. Thus f(u) = tr(u†AuB) should be of

the form
∑d

k=1
λξ(k)µk for some permutation ξ, where λk

and µk are eigenvalues of A and B, respectively. Thus
f(u) can take at most d! possible values and should be
a constant C for any local unitary u. To calculate C
explicitly, let us choose a set of local unitary operations
{uk : k = 1, · · · , d2} on H such that the following identity
holds:

1/d2

d2∑

k=1

u†kAuk = tr(A)IH/d, (5)
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where A is an arbitrary linear operation on H. Intu-
itively, Eq. (5) represents the completely depolarizing
channel on B(H). Such local unitary operations do exist.
For instance, one may choose {uk} as the tensor products
of the generalized Pauli matrices acting on Hl. It follows
that

1/d2

d2∑

k=1

u†kAukB = tr(A)B/d. (6)

Taking trace and noticing that tr(uk
†AukB) = C for any

1 ≤ k ≤ d2, we have C = tr(A)tr(B)/d. With that we
complete the proof of Lemma 6. �

The following theorem deals with the case when U †
1
U2

is Hermitian.

Theorem 3. Let U1 and U2 be two different uni-
tary operations acting on H such that U †

1
U2 is Her-

mitian (up to some phase factor). Then there ex-
ists a finite n > 1 and a sequence of local unitary
operations u(1), · · · , u(n−1) such that W †

1
W2 is non-

Hermitian, where W1 = U1u
(1) · · ·u(n−1)U1 and W2 =

U2u
(1) · · ·u(n−1)U2.

Proof. Without any loss of generality, we may assume
that U †

1
U2 = D for some Hermitian D. It is worth noting

that D = I − 2P for some projector P . Hence we can
assume that tr(D) is a positive integer strictly less than
d. By contradiction, suppose that for any n > 1 and any
local unitary operations u(1), · · · , u(n−1), we have that
W †

1
W2 is Hermitian. Let D(n) = (Un

1
)†Un

2
. We shall

prove that

tr(D(n)) = (tr(D)/d)n−1tr(D), n ≥ 1. (7)

The case of n = 1 holds trivially. Assume n > 1. By the
assumption we have

(Un−1uU1)
†(Un−1

2
uU2) = U †

1
[u†D(n−1)uU1DU

†
1
]U1 (8)

is Hermitian for any local unitary u. Applying Lemma 6
and setting u = IH we have

tr(D(n)) = tr(D(n−1))tr(U1DU
†
1
)/d.

More explicitly,

tr(D(n)) = (tr(D)/d)tr(D(n−1)), tr(D(1)) = tr(D).

Solving this relation we complete the proof of Eq. (7).
However, Eq. (7) cannot be true for all n > 1. More

precisely, since tr(D) < d, it is obvious that tr(D(n)) is a
strictly decreasing sequence with respect to n. Therefore
for some suitable n we should have 0 < tr(D(n)) < 1,
which contradicts the fact that tr(D(n)) is a positive
integer. �

In summary, we consider the discrimination between
multipartite unitary operations by local quantum opera-
tions and classical communications only, and show that
a perfect discrimination in this scenario is always possi-
ble. There are numerous open problems. For example,
it remains unsolved whether a perfect discrimination can
be achieved by merely a parallel scheme or a sequential
scheme. Another challenging problem is to determine
the minimal number of the runs needed for a perfect dis-
crimination between two multipartite unitary operations
in the LOCC scenario. Similar problems have been com-
pletely solved in the global scenario [2, 3, 4].
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[2] A. Aćın, Phys. Rev. Lett. 87, 177901 (2001).
[3] G. M. D’Ariano, P. LoPresti, and M. G. A. Paris, Phys.

Rev. Lett. 87, 270404 (2001).
[4] R. Y. Duan, Y. Feng, and M. S. Ying, Phys. Rev. Lett.

98, 100503 (2007).
[5] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69,

2881 (1992).
[6] J. Oppenheim and B. Reznik, Phys. Rev. A 70, 022312

(2004).
[7] S. Mozes, J. Oppenheim, and B. Reznik, Phys. Rev. A

71, 012311 (2005).
[8] A. Chefles, Physical Review A 64, 062305 (2001).
[9] K.M.R. Audenaert, J. Calsamiglia, Ll. Masanes, R.
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