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Abstract 

Luminescence properties of nanocomposites consisting of ZnO nanoparticles in a conjugated 

polymer, MEH-PPV, were investigated. Photoluminescence measurements reveal a blue shift 

in the emission spectrum of MEH-PPV upon incorporation of ZnO nanoparticles into the 

polymer film while the emission is increasingly quenched with increasing ZnO concentration. 

In contrast, the structure of the polymer and its conjugation length are not affected by the 

presence of ZnO nanoparticles (up to 16 weight % ZnO) as revealed by Raman spectroscopy. 

The blue shift and photoluminescence quenching are explained by the separation of 

photogenerated electron-hole pairs at the MEH-PPV/ZnO interface and the changing of the 

nanoparticles.  

 

1. Introduction 

Incorporating inorganic nanoparticles into conjugated polymer matrices is an area of current 

interest in the fields of optoelectronics and solar energy. This approach can take advantages of 

the beneficial properties of both materials: superior optoelectronic properties of conjugated 

polymers and high electron mobility of inorganic semiconductors [1]. In addition, polymers 

are technologically advantageous owing to the ease and flexibility of processing devices in 

solutions. There have been reports on polymer-inorganic hybrid solar cells using CdSe [2], 

TiO2 [3] and ZnO nanoparticles and nanopods [4, 5]. Experimental results have demonstrated 

that these hybrid devices provide the potential for improving the performance with the power-

conversion efficiency better than those achieved with polymer-only devices. In this context, 

dispersing nanoparticles in a polymer matrix is of interest for both basic research and 

optoelectronic applications. 
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In this paper we present an optical and chemical study of nanocomposites composed of ZnO 

nanoparticles and poly[2-methoxy-5-(2’-ethyl hexyloxy)-phenylene vinylene] (MEH-PPV). 

ZnO and MEH-PPV were chosen because these two materials are widely studied for their 

intriguing optoelectronic properties. In a type II heterojunction between a polymer and a wide 

band gap semiconductor such as the MEH-PPV/ZnO system, electrons can diffuse unimpeded 

from the polymer to the semiconductor. As the polymer is illuminated with photons of energy 

larger than the band gap, electron-hole pairs are generated. The electrons are injected into the 

conduction band of the semiconductor and can move along the nanoparticle network, 

ultimately being collected via an electrical contact in photovoltaic devices. The nature of the 

charge transfer process depends on the optical properties of two materials as well as the 

surface properties of the nanoparticles. The present study focuses on the luminescence 

properties of the MEH-PPV/ZnO nanocomposite and the energy transfer between the polymer 

and the nanoparticles.  

 

2. Experimental 

ZnO nanoparticles with an average diameter of 25 nm were chosen for this study to provide a 

large surface area-to-volume ratio without introducing quantum size effects (the Bohn radius 

of ZnO is 1.8 nm.) The nanoparticles were obtained from Advanced Nanotechnology Ltd, 

Australia who fabricate undoped ZnO nanoparticles using a mechanochemical-processingTM 

technique. MEH-PPV (the molecular structure is shown in Fig 1) was prepared using an 

improved synthesis method described by Neef and Ferraris [6]. The polymer was dissolved in 

toluene to form solutions with a concentration of 8 mg/ml. Composite samples were prepared 

by adding ZnO nanoparticles to MEH-PPV solutions, followed by ultrasonication for 1 hour 

to improve the dispersion of ZnO nanoparticles. Films are prepared by spin-coating onto glass 

or KBr substrates. Characterization of the nanocomposite films was performed by Raman 
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spectroscopy using a Brucker RFS 100 spectrophotometer. Photoluminescence (PL) 

measurements were made using a Fluorolog-3 spectrophotometer with optical excitation at 

480 nm. 

 

3. Results and discussion 

The PL spectra of pure MEH-PPV and MEH-PPV/ZnO nanocomposites in the wavelength 

range from 500 to 800 nm are presented in Fig 2(a). In this range, MEH-PPV is primarily 

responsible for the luminescence emission with little contribution from ZnO. The dominant 

peak of pure MEH-PPV at 607 nm is an emission characteristic of the PPV backbone that 

arises from the relaxation of excited π-electrons to the ground state, while the 635-nm peak is 

related to the interchain states [7, 8]. The emission features are not significantly affected by 

the incorporation of nanoparticles; however, a remarkable blue-shift is observed for the 

composites. The wavelength shift depends on the ZnO content with a maximum shift of 11 

nm observed for 2 weight % (Figure 2(b)). Furthermore, incorporation of ZnO nanoparticles 

into MEH-PPV results in luminescence quenching of the polymer. Since the films are 

deposited on identical KBr substrates using the same deposition parameters, any variation in 

the PL emission is expected to result from the nature of the nanocomposites. At 16 weight % 

ZnO, 60% of the original MEH-PPV emission intensity is lost. Considering the small amount 

of ZnO incorporated into the nanocomposite films, the luminescence quenching cannot be 

attributed to a reduction in the volume of the emissive material, but rather to either energy or 

exciton transfer from the polymer to ZnO. Although the Förster energy transfer mechanism 

has been recently invoked for PbS and CdSe nanoparticles incorporated in MEH-PPV [9, 10], 

it can be excluded in this case due to the lack of overlap between the ZnO absorption and 

MEH-PPV emission spectra. On the basis of the relative positions of the MEH-PPV and ZnO 

energy levels, the disassociation of excitions at the interface between the materials is 
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energetically allowed (Figure 3). Exposure of the nanocomposite films to visible light (λ = 

480 nm) does not lead to the generation of electron-hole pairs in the bulk of ZnO since the 

photon energy is smaller than the band gap of the material, optical excitations occur entirely 

within the polymer matrix. The transfer of excitons produced by photo-excitation of MEH-

PPV to the ZnO conduction band should be responsible for the luminescence quenching 

(discussed further below). Similar behaviours have been reported for composite thin films of 

poly(3-hexylthiophene) and ZnO nanoparticles [4]. The polymer emission quenching in our 

case is more severe because of a larger surface area-to-volume ratio (smaller nanoparticles), 

leading to a higher possibility of charge transfer at the MEH-PPV/ZnO interface. 

 

As a general trend, as more ZnO nanoparticles are incorporated into the film, the MEH-PPV 

luminescence quenching increases and a shift of the emission spectrum to shorter wavelengths 

is observed. However, the blue shift is less dramatic for the nanocomposite films with the 

ZnO content > 4 weight %. Even at the low nanoparticle contents used in the present study, 

the possible formation of nanoparticle aggregates may be envisaged, similar to our previous 

findings of PPV/SiO2 composite films [11]. The reduced blue shift in the emission spectra for 

the nanocomposites with high ZnO concentrations is most likely due to an increase in the 

nanoparticle aggregation that would result in a lower number of interfaces with the 

nanoparticles.  

 

A blue shift in the luminescence spectrum of a conjugated polymer is commonly associated 

with changes in the conjugation length. Upon incorporation of nanoparticles, bonds between a 

polymer chain and the nanoparticle surface may be formed, altering the electronic 

configuration of the polymer chain and hence the conjugation length [12]. However, this is 

not the case for the MEH-PPV/ZnO system. Figure 4 presents the Raman spectra of pure 
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MEH-PPV and the composite films, which show no significant differences in either the shape 

or the intensity of the characteristic bands of MEH-PPV, suggesting no changes in the 

conjugation length [12]. For the composite films with the ZnO concentration ≥ 8 weight %, 

there is a weak band at 436 cm-1 attributable to the optical phonon E2 mode of ZnO [13]. All 

the spectra display Raman band frequencies at 1115 cm-1 (mixture of C–C stretching and C–H 

in-plane bending liberation), 1282 cm-1 (C=C stretching band of benzene), 1582 cm-1 (C–C 

stretching band of benzene) and 1624 cm-1 (C=C stretching band of vinyl group) [11, 14]. The 

triplet bands around 1582 cm-1 are particularly sensitive to the chain planarity and conjugation 

length of PPV-based polymers [15]. Careful inspection of the triplet indicates that the relative 

intensities of two bands at 1547 and 1624 cm-1 remain virtually unchanged for the 

nanocomposites with ZnO concentrations ≤ 16 weight %. These results indicate that the 

chemical structure and the gap energy of MEH-PPV are not affected by the incorporation of 

ZnO nanoparticles.  

 

A plausible explanation for the blue shift of the luminescence spectrum is the effect of the 

electric field produced by excess electrons on the nanoparticle surface as suggested by 

Musikhin et al. [16]. The surface of ZnO nanoparticles is a strong perturbation of the lattice 

where there exists a high concentration of both shallow and deep defect levels [17, 18]. To 

elucidate the surface chemical structure, we have conducted an X-ray photoelectron 

spectroscopy (XPS) analysis of the ZnO nanoparticles. The O/Zn atomic ratio, determined 

using the integrated intensities of the O 1s and Zn 2p3/2 levels, is 0.67 ± 0.10, which is 

significantly less than unity, indicating that the surface region of the nanoparticles is non-

stoichiometric with a large number of oxygen vacancies. Furthermore, the oxygen vacancy 

Vo

+  with one electron was found to be the most abundant oxygen-deficient-related defects in 

ZnO nanoparticles [19]. The energy level of the Vo

+  centre is located at ~ 1 eV below the 
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conduction band edge [20]. Each Vo

+  centre can accept an electron to become a V0

o
 centre 

(oxygen vacancy occupied by two electrons). Upon the transfer of electrons from MEH-PPV, 

these electrons can populate the defect states, thus creating an electric field outside the 

nanoparticles. This will raise the energy of the lowest exciton state and lead to the blue shift 

of the luminescence. The absence of any changes in the Raman bands, together with the 

results from surface characterisation of the nanoparticles, indicates that, contrary to a previous 

report on the degradation of polymers [5], the blue shift is due to the charging of the ZnO 

nanoparticles. After sufficient illumination and all the defect centres are filled, trapped 

electrons can undergo non-radiative decays via surface states, or tunnel into the nanoparticle 

and relax radiatively or non-radiatively, depending on the nature of the final state. This 

mechanism also provides a route towards separation of electron-hole pairs which are 

photogenerated within MEH-PPV and explains the quenching of the polymer emission.  

 

4. Conclusions 

We have investigated the luminescence spectra of nanocomposites based on MEH-PPV with 

embedded ZnO nanoparticles. Results of PL measurements show a remarkable blue shift in 

the luminescence spectra upon addition of the ZnO nanoparticles, accompanied by substantial 

quenching of the emission. Raman spectroscopy indicates that the conjugation length and the 

chemical structure of the polymer are unaffected by the incorporation of the ZnO 

nanoparticles up to 16 % by weight. The luminescence quenching is due to the transfer of 

photogenerated electrons from the polymer to ZnO while the blue shift is attributable to the 

electron charging of the nanoparticles.  
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Blue shift in the luminescence spectra of MEH-PPV films containing ZnO 

nanoparticles 

 
Figure Captions  

Fig. 1. Molecular structure of MEH-PPV 

Fig. 2. (a) PL spectra of pure MEH-PPV and MEH-PPV/ZnO nanocomposite films acquired 

at 300 K. Films were deposited onto KBr substrates. Excitation was set at λ = 480 nm. (b) 

Variations of the wavelength shift and the relative intensity of the PL spectrum as a function 

of ZnO weight fraction in the films.  

Fig. 3. Energy level diagram for ZnO and MEH-PPV (CB = conduction band, VB = valence 

band, LUMO = lowest unoccupied molecular orbital, HOMO = highest occupied molecular 

orbital) 

Fig. 4. Raman spectra of pure MEH-PPV and MEH-PPV/ZnO nanocomposites. There are no 

significant changes in the characteristic bands of MEH-PPV upon incorporation of the 

nanoparticles into the polymer.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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