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Abstract—There are current limitations in the recording 

technologies for measuring EEG activity in clinical and 
experimental applications. Acquisition systems involving wet 
electrodes are time-consuming and uncomfortable for the user. 
Furthermore, dehydration of the gel affects the quality of the 
acquired data and reliability of long-term monitoring. As a result, 
dry electrodes may be used to facilitate the transition from 
neuroscience research or clinical practice to real-life applications. 
EEG signals can be easily obtained using dry electrodes on the 
forehead, which provides extensive information concerning 
various cognitive dysfunctions and disorders. This work presents 
the usefulness of the forehead EEG with advanced sensing 
technology and signal processing algorithms to support people 
with healthcare needs such as monitoring sleep, predicting 
headaches, and treating depression. The proposed system for 
evaluating sleep quality is capable of identifying five sleep stages 
to track nightly sleep patterns. Additionally, people with episodic 
migraines can be notified of an imminent migraine headache 
hours in advance through monitoring forehead EEG dynamics. 
The depression treatment screening system can predict the 
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efficacy of rapid antidepressant agents. It is evident that frontal 
EEG activity is critically involved in sleep management, headache 
prevention, and depression treatment. The use of dry electrodes 
on the forehead allows for easy and rapid monitoring on an 
everyday basis. The advances in EEG recording and analysis 
ensure a promising future in support of personal healthcare 
solutions. 

Index Terms— Depression, Forehead EEG, Healthcare, 
Migraine, Sleep 
 

I. INTRODUCTION 
HE electroencephalogram (EEG) is a commonly used 
medical testing device that detects abnormal electrical 

activity in the brain. Significant advances in neuroscience, 
sensor technologies [1, 2], and efficient signal processing 
algorithms have facilitated the transition from clinical-oriented 
diagnoses and research to personal healthcare applications. It is 
evident through the literature that there is promising future for 
the everyday use of EEG for monitoring and tracking health. 

Conventional wet adhesive Ag/AgCl electrodes that are 
placed on a cap and connected to a signal amplifier are the most 
common devices for recording EEG signals from the scalp in a 
clinical context. To ensure that a high-quality EEG signal is 
obtained, a time-consuming process requiring proper skin 
preparation and electrolyte application must be performed. 
Recent advances in material technology have led to progress in 
the development of dry EEG sensors avoiding a conductive gel. 
Furthermore, miniature circuits—integrated with signal 
amplifiers, a wireless transmission component, and long-life 
battery—transform a restrictive acquisition system into a 
portable device. However, it is challenging to maintain good 
contact between the electrodes and a hairy scalp. Despite a 
signal quality assessment model [3], invalid EEG data 
collection is inevitable—limiting the practicability of EEG in 
healthcare. 

The forehead is an ideal location on the scalp for attaching 
EEG electrodes as it is not covered in hair. Preparing the 
forehead for EEG placement takes only a few minutes, which is 
a significant time reduction[4]. Non-hairy regions of the 
forehead can be used to extract rich information that originates 
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in the anterior cingulate cortex, prefrontal cortex and the 
frontoparietal cortical network, which are associated with many 
cognitive abilities and dysfunctions. Given this unique feature, 
most existing consumer brain-computer interfaces (BCI) and 
clinical applications rely on forehead electrodes [5, 6]. 

One of the most successful consumer products is the sleep 
tracking device, which is widely advertised to provide positive 
effects on overall health [7]. Sleep is suggested to play an 
important role in restitution [8]. Numerous pathologies are 
related to sleep; therefore, a method for evaluating sleep quality 
is desirable. Many wristbands evaluate the quantity and quality 
of sleep using an actigraph with a built-in 3D accelerometer [7, 
9]. However, wristband devices do not differentiate the distinct 
phases of sleep (light sleep, deep sleep, and rapid eye 
movement sleep), which is important for physicians to evaluate 
sleep patterns. Polysomnography (PSG) [10]is the standard 
process to record and comprehend the biophysiological 
changes that occur during sleep; PSG is performed during 
clinical sleep tests. Among PSG methods, the EEG yields the 
most important information about sleep oscillations, such as 
K-complex, spindle, and delta waves that are generated in 
various sleep stages [11]. Regarding the brain region, sleep is 
characterized by a fronto-occipital EEG power gradient, of 
which frontal areas are specifically involved in sleep 
homeostasis [12, 13]. A lack of adequate sleep has deleterious 
effects—particularly on alertness, attention, decision-making, 
and cognitive processes, which are associated with the frontal 
lobe function [14]. The theta power during prolonged 
wakefulness has a particular frontal concentration, suggesting 
that frontal regions may provide a marker for sleep propensity 
during wakefulness. Additionally, previous EEG findings 
concerning insomnia—a sleep disorder of inadequate nighttime 
sleep with difficulty in initiating and maintaining sleep [15] 
—have revealed increased signals with high frequencies in 
patients with primary insomnia. 

Prevention is key to reducing healthcare costs; a successful 
case is migraine prevention. A migraine is characterized by 
recurrent headaches and is particularly prevalent in developed 
countries [16]. When a headache occurs, it if difficult for 
patients to maintain concentration and perform daily activities; 
this impairment results in considerable economic losses. Lack 
of sleep and excessive sleep are both deemed triggers for 
migraines [17]. The EEG patterns that are observed in migraine 
patients support a physiological connection between sleep and 
migraines [18]. Most EEG studies of migraines describe 
functional changes between, before and during attacks, 
including abnormal effective connectivity, hyperresponsivity to 
repeated sensory stimuli with abnormal temporal processing, 
the malfunctioning sequential recruitment of neuronal networks, 
and impaired habituation [19, 20]. EEG patterns reflect the 
dynamic complexity of patients’ brains [21], which may 
facilitate the prediction of imminent migraine headaches hours 
in advance and monitor the effects of therapeutic interventions. 
Predicting the onset of a migraine is important, as the use of 
preventive medications before an attack can significantly 
reduce the severity and duration of a headache. Therefore, it is 
important to investigate the fundamental patterns from EEG 

activity to distinguish the inter-ictal phase from the pre-ictal 
phase. 

Personalized medicine is developing rapidly [22]. Recently, 
the biomarker used to optimize the initial treatment selection in 
depression has been extensively explored [22-24]. Depression 
is a disorder of the affective system, with a lifetime prevalence 
of approximately 13% in men and 21% in women [25]. The 
major symptoms of depression include low or depressed mood, 
anhedonia, and low energy or fatigue. Overall, one-third of 
patients with a major depressive disorder do not respond to 
existing antidepressants; researchers are eager to explore a 
biomarker that can predict the efficacy of a treatment before 
antidepressants are given and an appropriate treatment is 
prescribed. Previous studies have demonstrated the broad use 
of EEG in clinics to study antidepressant treatment responses 
[26, 27]. Furthermore, studies have shown that discriminative 
EEG patterns may help patients predict the effects of 
antidepressants as treatment [27]. Theta (4-7.5 Hz) and alpha 
(8-12 Hz) activity-derived measures indicated that the response 
effects of antidepressants correlated to dynamic changes of 
EEG power in the forehead area [27-30]. Thus, the forehead 
EEG may have important implications for the diagnosis and 
treatment of depression. EEG signals can be used to guide the 
development of personalized medicine, including the selection 
of an appropriate dose, and optimal therapies. 

This paper presents practical methods for monitoring sleep 
quality, warning for oncoming of migraine attacks, and 
screening depression treatments. The proposed solutions are 
based on EEG patterns extracted from the forehead area using a 
wireless and dry EEG system [1, 2, 31]. The basic principles of 
each method are introduced, and the feasibility of their use in 
real-life applications is demonstrated.  

II. WEARABLE HEADBAND WITH DRY ELECTRODES FOR 
FOREHEAD EEG SENSING 

Wet electrodes are commonly used to measure EEG signals; 
proper skin preparation and the application of a conductive gel 
yields strong EEG signals. However, these processes are 
typically troublesome for users. The development of wireless 
and wearable EEG systems, such as Cognionics [32], Enobio 
[33], NeuroSky [34], DSI 10/20 [35], and imec [36], have been 
developed to mitigate the application process. Researchers have 
also developed distinct novel dry-contact EEG sensors, 
including spring-loaded [37] and foam-based sensors [38], 
which can efficiently reduce the required preparatory work 
without the use of a conductive gel. The spring-loaded sensor 
[37] was proposed for use on hairy sites without skin 
preparation or the use of a conductive gel. Each sensor was 
designed with a probe head, plunger, spring, and barrel. The 
probes were inserted into a flexible substrate using a one-time 
forming process based on an established injection molding 
procedure. With spring contact probes, the flexible substrate 
allows for high geometrical conformity between the sensor and 
the irregular scalp surface and generates a low skin-sensor 
interface impedance. Additionally, the flexible substrate has a 
sensor buffer effect, which eliminates pain when a force is 
applied. 
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The dry foam electrode [38] is fabricated by covering an 
electrically conductive polymer foam with conductive fabric 
and can be used to measure bio-potentials at non-hairy sites, 
such as the forehead, without skin preparation or the use of a 
conducting gel. The foam substrate of a dry electrode provides 
high geometric conformity to an irregular scalp surface to 
maintain low skin-electrode impedance—even under motion. 
The presence of a new sensor made of a silicon-based 
conductive material further satisfies the requirements of being 
conductive, flexible and non-irritating to the skin [31]. 

In laboratory- and clinical-based EEG devices, the measured 
brain activity is transmitted via a cable connected from the EEG 
cap to a computer. This cable limits the usefulness of BCI. To 
solve this problem, the developed EEG headband (Fig. 1) 
features a wireless transmission module and a chargeable 
battery that support recordings without connection to a 
computer and enable users to move freely. With this freedom, 
wireless and wearable EEG devices have been used in 
experiments involving complex activities such as driving [39]. 
This convenient EEG acquisition system can be used to 
improve our understanding of complex coordinated- and 
multi-joint naturalistic behaviors in operating environments. 

A. Novel Flexible Silicon-based Dry Sensors 
The major components of the proposed silicon-based dry 

sensor (Figs. 1A and 1B) include silicon, silver, AgSiO2, gel 
and thick-film pastes. A compound containing the correct ratio 
of components provides low impedance and high flexibility. 
The proposed sensor has a lightweight design and uses limited 
material to optimize its sensitivity. Several molds were used to 
produce different sensor shapes for use in different areas. The 
fabrication procedure included high-temperature and 
high-pressure treatments. The manufacturing conditions (i.e., 
temperature, flow and pressure) were controlled in all bind 
molding processes. If the electrode was to be combined with 
metal contact bars, a special conductive gel was used in the 
bind molding process. Temperature control is important as the 
materials (i.e., metal, conductive gel, silicon and silver-based 
material) have different expansion coefficients. Additionally, 

forming different electrodes shapes requires a highly precise 
process. The flexible silicon-based dry sensor design can 
improve the signal quality and extend the life-cycle of 
electrodes. 

B. Lightweight Headband that Incorporates Miniature Data 
Acquisition Circuitry and Wireless Telemetry 

As presented in Fig. 1C, two circuit boards are embedded in 
the acquisition system; the major components include 
amplifiers, analog-to-digital converter (ADC) units, a 
microcontroller unit, and a wireless module (Bluetooth unit). 
The size of the proposed circuit boards is 30×25×5 mm3. The 
circuit boards and battery are small enough to be housed in the 
EEG device (Fig. 1D). In the EEG measurement process, 
analog EEG signals were measured using dry sensors and 
preamplified using instrumentation amplifiers. The 
preamplifier provides a high input impedance and high 
common-mode rejection ratio (CMRR) and amplifies the 
microvolt-level EEG signals into the detectable range. Then, 
the analog EEG signal was transformed to a digital signal using 
an ADC [40]. A microcontroller was used to pack the digital 
data from each channel into Bluetooth packets. The packets 
were switched to a Bluetooth module using a universal 
asynchronous receiver/transmitter. 

The gain of the preamplifier unit was set to 1361 (default), 
and the cut-off frequency was regulated at 0.23 Hz using a 
high-pass filter. The ADC setting was configured to provide a 
24-bit resolution of EEG signals at a sampling rate of 250/500 
Hz. The power-line interference was removed by a 
microcontroller using a moving average filter (i.e., notch filter) 
with a frequency of 60 Hz. The digitalized and processed 
signals were transmitted to the receiving application via a 
Bluetooth module with a baud-rate of 921600 bits/s. Power was 
supplied by a high-capacity (750 mAh, 3.0 V) Li-ion battery 
capable of continuous operation for 8 to 10 hours. 

C. Signal Pre-processing 

 
Fig. 1.  Wearable headband with dry electrodes for forehead EEG sensing. (A) Silicon-based EEG sensor. Length, width, and height of the electrode are 18, 15, and 
2 mm, respectively, in each dimension. (B) Channel placement. Five electrodes are embedded. (C) EEG acquisition circuit. Major components include amplifiers, 
analog-to-digital converter units, a microcontroller unit, and a wireless module. The size of the proposed circuit boards is 30×25×5 mm3. (D) Wearable headband. 
Users can easily adjust to fit as tight or loose as desired. One reference electrode is used in contact with a user’s earlobe. (E) Forehead EEG sensing. The developed 
EEG system is designed to easily wear and provide access to the forehead locations without gels or other preparation. 
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The EEG data were analyzed with EEGLAB, an open- 
source MATLAB toolbox for electrophysiological signal 
processing and analysis [41]. To avoid artifact interference in 
the models, EEG data were bandpass-filtered from 1 to 30 Hz 
using a zero-phase FIR filter before being inspected by 
experienced EEG specialists. Then, the EEG signals were 
inspected again using the Automatic Channel Rejection (ACR) 
function in EEGLAB to remove noisy channels. The processed 
EEG signals were used for further analysis. Several methods of 
artifact removal have been proposed for single-channel 
collection of EEG data from everyday tasks [42]. 
Single-channel data acquisition is appropriate for use in 
portable environments with the constraints of a wearable 
sensor. Algorithms based on single-channel independent 
component analysis, empirical mode decomposition, or wavelet 
decomposition have a low computing cost and address the risk 
of artifacts. 

III. SYSTEM FOR EVALUATING QUALITY OF SLEEP 
Sleep monitoring is essential when evaluating individual 

health. Sleep quality is evaluated by sleep duration and 
continuity [43]. According to Rechtschaffen and Kales [44], 
sleep can be divided into wakefulness (W), movement, rapid 
eye movement (REM) and sleep stages S1, S2, S3, and S4. In 
the guidelines of the American Academy of Sleep Medicine 
(AASM) [45], sleep stages S1 to S4 are referred to as non-REM 
stage 1 (N1), stage 2 (N2), and stage 3 (N3). N3 involves slow 
wave sleep (SWS), which combines sleep stages S3 and S4 
based on the sleep stage criteria of Rechtschaffen and Kales. 
The PSG [10], consisting of at least 11 channels of EEG, 
electromyography (EMG), electrooculography (EOG), oxygen 
saturation (SpO2), and electrocardiography (ECG) is the most 
common test in sleep diagnoses.  

Generally, a well-trained sleep technician scores each 30 s 
EEG data point through visual inspection based on the AASM. 
An epoch is scored as W when more than 50% of the 1 s 
subepochs are dominated by the alpha (8-12 Hz) rhythm. An 
epoch is scored as N1 when the alpha rhythm is attenuated and 
replaced by the theta (5-7 Hz) rhythm. An epoch is scored as 
N2 when the K-complex or sleep spindle (12-14 Hz) occurs 
with a theta background rhythm. An epoch is scored as N3 
when more than 20% of the subepochs exhibit high-amplitude 
slow wave activity. However, this visual inspection process is 
time-consuming and laborious. To address this issue, this work 
proposes an automatic sleep stage classification system [46]. 

A. Participants and Data Acquisition 
Ten healthy adults (males, age 24±6 years) were recruited for 

this sleep study. All subjects were required to sleep for one 
night in the sleep laboratory at National Chiao Tung University, 
Taiwan. All experimental procedures were approved by the 
local ethics committee (Institutional Review Board of Taipei 
Veterans General Hospital, Taiwan). The forehead EEG signals 
(Fp 1 and Fp2) and the PSG signals were recorded 

simultaneously at a sampling rate of 256 Hz (Sandman Elite, 
Nellcor Puritan Bennett [Melville] Ltd., Kanata, Ontario, 
Canada). Each dataset contained five to eight hours of forehead 
EEG signals and a complete PSG signal. Each 30 s epoch was 
scored as W, REM, N1, N2, and N3 by a sleep specialist who 
has over thirty years of experience in clinical sleep diagnoses. 
In total, there were 1518, 1084, 3119, 1283, and 1247 epochs 
scored as W, N1, N2, N3, and REM, respectively.  

B. Automatic Classification of Sleep Stages 
As presented in Fig. 2, the main components of the proposed 

sleep stage classification system include preprocessing, feature 
extraction, and classification. In the preprocessing step, the 
recorded signals were down-sampled to 128 Hz to reduce the 
volume of data and then filtered through a 0.5-50 Hz band-pass 
filter to eliminate the artifacts. Next, the short-time Fourier 
transformation (STFT) was used to capture the spectral patterns 
in the EEG. Two EEG features were extracted from the low 
delta band used to measure slow wave activity; two features 
were extracted from the delta activity to describe the 
K-complex; two features were extracted from the theta activity 
to measure the theta background rhythm; two features were 
extracted from the alpha activity to measure the alpha 
background rhythm, and two features were extracted from the 
sigma activity to represent the features of the spindle. Two and 
one feature(s) are extracted from the beta and gamma activities, 
respectively, to detect movement. Therefore, a total of 13 
features were extracted and used to construct the sleep stage 
classification system. 

 
Fig. 2.  Sleep quality evaluation system. The input data are EEG signals of Fp1 
and Fp2, and then preprocessed by a down-sampled procedure and a band-pass 
filter. Each of the processed data is transformed to a 13-dimensional feature 
vector used to construct the relevance vector machine for the sleep stage 
classification (W, N1, N2, N3, and REM).  
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The following were used to perform the classification: the 
relevance vector machine (RVM), based on a Bayesian 
framework, and a support vector machine (SVM) [47] that 
learns the maximal probability of margins between binary 
classes. Unlike the support vector machine, the RVM can solve 
the overfitting problem, which typically occurs if SVM requires 
too many support vectors, and the parameter setting problem 
(i.e., penalty parameter/slack variable). Therefore, in this sleep 
stage classification system, the RVM was used to classify the 
five sleep stages. Regarding the system performance, the 
consistency between the clinical electrophysiologist and the 
proposed system was calculated. Additionally, the Cohen’s 
kappa coefficient (κ) was estimated to measure the agreement 
between the specialist and the system. When the specialist and 
the system were in complete agreement, then κ=1. When there 
was no agreement (other than what would be expected by 
chance), then κ ≤ 0. The performance of the proposed system 
was evaluated by the leave-one-subject-out cross validation 
method. 

C. Classification Results 
Fig. 3 presents a one-night sleep analysis based on the 

developed classification system. In this case, the consistency 
between the clinical electrophysiologist and the proposed 
system was 79.9% and κ=0.73. As displayed in Table I, the 
classification accuracies of the W, N1, N2 N3, and REM stages 
were 84.1%, 22.4%, 85.0%, 87.1%, and 83.2%, respectively. 
Most of the sleep stages, except for the N1 stage, were 
effectively classified (>80%) using the proposed system. Many 
epochs of N1 were misclassified as W, N2, or REM. Identifying 

N1 was difficult [48] because N1 is a transition phase between 
wakefulness and other sleep stages. The sleep EEG 
characteristics of N1 closely resemble those of N2, REM, and 
resting wakefulness. Efforts are under way to solve this 
problem. The overall consistency between the clinical 
electrophysiologist and the proposed system was 76.7%,and the 
overall Cohen’s kappa coefficient was κ=0.689. The 
performance of the sleep stage classification system with a 
forehead-only EEG is near that of a sleep expert. 

IV. FOREHEAD EEG COMPLEXITY DYNAMICS BEFORE 
MIGRAINE ATTACKS 

Approximately 70-90% of migraine patients have migraines 
without aura (MoA), meaning that there is no early warning of 
imminent pain [49]. In the migraine cycle shown in Fig. 4, the 
72-hour period before a headache attack is defined as the 
pre-ictal phase; the 72-hour period after a headache attack is 
defined as the post-ictal phase; the period between the pre- and 
post-ictal phases is the inter-ictal phase. It is important to 
identify a biomarker that can differentiate between the pre-ictal 
phase from the inter-ictal phase. Many studies [50, 51] have 
reported forehead cortex dysexcitability in migraine patients. 
To model this abnormality, a multiscale fuzzy entropy analysis 
(MFE) [52, 53] was performed on the forehead EEG to 
compare the entropy values in the different phases of a 
migraine.  

A. Patients and Experiment 

TABLE I 
CONSISTENCY BETWEEN THE SLEEP STAGES SCORED BY THE EXPERT AND THE 

PROPOSED SYSTEM 

 Sleep Stage Classification System 
W N1 N2 N3 REM 

Ex
pe

rt 

W 84.1% 6.8% 5.5% 0.4% 3.3% 
N1 17.3% 22.4% 36.2% 0.6% 23.6% 
N2 1.6% 3.8% 85.0% 6.3% 3.4% 
N3 0.3% 0.0% 12.0% 87.1% 0.6% 

REM 2.2% 8.0% 6.2% 0.3% 83.2% 
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Fig. 3.  Sleep analysis. (A) Sleep report of a night sleep estimated by the 
proposed system. (B) Zoom-in view of spectral responses of Fp1 between 
1:00-2:00 am. (C) Zoom-in view of the sleep report scored by the proposed 
system. (D) Zoom-in view of the sleep report scored by the clinical 
electrophysiologist. 
  

 
Fig. 4.  Migraine cycle. Four potential phases of migraines are pre-ictal (the 
period of 72 hours before a headache attack), ictal (headache attack), 
post-ictal (the period of 72 hours after a headache attack), and inter-ictal (the 
period between the post-ictal phase and the pre-ictal phase). To avoid the 
headache attack, predicting the EEG-based dynamic complexity from the 
inter-ictal phase to the pre-ictal phase is desirable. 
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A total of 40 MoA patients (10 men and 30 females, age 
38.1±8.2 years) were recruited for this study. All patients met 
the diagnostic criteria of the International Classification of 
Headache Disorders (2nd edition) (ICHD-II) and suffered from 
one to six attacks per month; the patients were required to keep 
a headache diary. The Institutional Review Board of the Taipei 
Veterans General Hospital approved this study. Informed 
consent was obtained from all subjects before testing. The EEG 
recording from each migraine patient was classified into one of 
the migraine phases (inter-ictal, pre-ictal, ictal and post-ictal) 
based on the headache diaries.  

This experiment was carried out in a lightless room in the 
Taipei Veteran General Hospital. The fluorescent lamps were 
turned off for the duration of the test to avoid interference from 
a light source. Five EEG recordings were collected for each 
patient every 3–15 days ; for each patient, at least one test was 
conducted in the inter-ictal and pre-ictal phase, separately. 
Eyes-closed resting EEG data were collected for 3 min from the 
Fpz site for each recording. Highly nonlinear and 
non-stationary artifacts increase the standard deviation of the 
data, which results in a poor estimation of brain complexity; the 
empirical mode decomposition (EMD) method was utilized as 
an adaptive filter to address this problem [54, 55], and the 
detrended EEG data were then analyzed by MFE.  

B. Results 
Fig. 5B compares the MFE areas in the inter-ictal and 

pre-ictal phases. There was a significant difference between the 
inter-ictal and pre-ictal phases (FDR-adjusted p-value<0.01) 
when comparing the areas under the EMD-MFE curve from 
scale 1 to 20 (MFE Area1-20). The complexity values of the 
pre-ictal phase significantly exceeded those of the inter-ictal 
phase in 29 patients of 40 patients (72.5% of participants). The 
patients who endured at least twice as many pre-ictal trials were 
used to establish and quantify reproducibility. In our study, 
eight migraine patients were selected and analyzed by the 
test-retest reliability measurement. The result showed that the 
intra-class correlation coefficient (ICC) was r=0.72 (p=0.02), 
supporting the reliability of elevated EEG complexity 
occurring in the majority of migraine patients. 

The hypo- or hyper normal brain activities may be driven by 
impaired cognitive or pathological functions, leading to 
dynamic changes of brain complexity and abnormal behavioral 

patterns [56]. The dynamic changes of forehead EEG 
complexity in migraines may be induced by the 
trigeminovascular pathway and sensitization of 
trigeminocervical neurons [57]. Moreover, the forehead 
cortical areas were found to modulate pain processing when a 
headache occurs [58]. The unique EEG migraine pattern 
confirms that monitoring the forehead EEG complexity in a 
resting state is a promising means of warning a patient of an 
imminent migraine hours in advance. 

V. SCREENING DEPRESSION TREATMENT TO PREDICT 
EFFICACY OF ANTIDEPRESSANT AGENTS 

A. Patients and Experiment 
A total of 20 participants (four men and 16 women, with a 

mean age of 44.3±13.0 years) were recruited among the 
outpatients of the Psychiatric Department of Taipei Veterans 
General Hospital. All subjects met the criteria for treatment 
resistant depression, and their initial scores were greater than or 
equal to 15 on the 17-item Hamilton Rating Scale for 
Depression (Ham-D-17) [59]. This study was approved by the 
Institutional Review Board at the Taipei VGH hospital. 
Informed consent was obtained from all subjects before they 
participated in the study.  

All participants received a ketamine (0.2~0.5 mg/kg) 
infusion. Each participant was requested to evaluate their 
depression a total of 13 times using Ham-D-17 scores. As 
shown in Fig. 6, Ham-D-17 scores were recorded at 0 min 
(baseline), 40 min (finished ketamine infusion), 80 min, 2 
hours, 4 hours, 24 hours (2 days), 48 hours (3 days), 72 hours (4 
days), 96 hours (5 days), 6 days, 7 days, 14 days, and 28 days 

 
Fig. 6.  (A) Ham-D-17 scores of 20 subjects from 0 min to 28 days. Patients with a Ham-D-17 reduction between 0 min and 4 hours of at least 50% are defined as a 
responder (red traces); other patients are non-responders (blue traces). (B) Classification accuracies of distinct classifiers (LDA, NSMC, k-NN, PARZEN, PERL, 
DRBM, and SVMRBF) in differentiating responders and non-responders. 
  

 
 
Fig. 5. Comparison of EMD-MFE area between inter-ictal and pre-ictal phases 
across different scales (1-20). The green and pink lines represent the mean 
complexity of the inter-ictal and pre-ictal phases, respectively. The dark line 
represents the significant difference of the mean complexity between two 
phases (FDR-adjusted p-value<0.01). 
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after the treatment. All participants underwent 
neurophysiological evaluations using a four-channel (AF7, 
Fp1, Fp2, AF8) dry-contact EEG device with a 10 min 
closed-eyes recording at baseline (0 min). 

B. Prediction of Ketamine Response  
The ultimate goal of this research is to predict the efficacy of 

the ketamine treatment using baseline EEG activity recorded 
before taking antidepressants. Based on the effects of ketamine 
in depressed patients [60], depressive symptoms may be 
significantly improve within four hours of a ketamine infusion. 
Hence, a patient with a Ham-D-17 reduction of at least 50% 
between 0 min and 4 hours was defined as a responder; other 
patients were non-responders. In this study, ten subjects (7 
female and 3 male, age 39.5±12.1 years) responded to 
treatment, and ten subjects (9 female and 1 male, age 49.0±12.6 
years) did not respond to treatment.  

The EEG theta activity has been suggested as a useful 
biomarker in major depressive disorder for prediction of 
treatment responses [26, 27]. To extract the treatment response 
of theta activity, the 10 min EEG data—with a sampling rate of 
512 Hz—were transformed into the spectral power using fast 
Fourier transformation (FFT). The FFT window was set to 0.5 
s, comprised 256 data points, and overlapped 50% with the next 
window. Each window of data was transformed into the 
frequency domain and averaged based on the number of 
segments, then the averaged FFT power was output. To 
eliminate the individual differences among power, the ratio of 
absolute theta power (4–7 Hz) to total power (1–12 Hz) was 
calculated. All relative theta powers of the four channels and 
the corresponding labels of responder and non-responder were 
used as the major features to build the prediction system. 

Seven well-known classifiers were implemented, including 
linear discriminant analysis (LDA), k-nearest neighbors (kNN, 
k=3), nearest mean classifier (NMSC), discriminative restricted 
Boltzmann machine (DRBMC), Parzen density estimation 
(PARZEN), perceptron classifier (PERLC), and support vector 
machine with a radial basis function (SVMRBF). A three-fold 
cross validation was performed up to 100 times to evaluate the 
classification performance. Finally, the accuracies of seven 
classifiers in predicting the efficacy of the ketamine treatment 
were compared.  

C. Results 
Fig. 6A presents the Ham-D-17 scores of 20 subjects from 0 

min to 28 days. The red and blue lines represent the Ham-D-17 
scores of responders and non-responders, respectively. The 
Ham-D-17 at the baseline was 20.9±5.4 for responders and 
22.9±4.3 for non-responders. After 4 hours, the Ham-D-17 
scores of responders and non-responders were 9.7±2.8 and 
19.2±5.5, respectively. Regarding the frontal EEG activity, the 
theta EEG powers of four frontal channels (AF8, Fp2, Fp1, AF7) 
of the responders was significantly lower than that of 
non-responders (FDR-adjusted p<0.05). The EEG results 
suggest that frontal theta EEG power (4–8 Hz power/1–12 Hz 
power) at pretreatment may be used as a biomarker to 
differentiate responders from non-responders. 

The theta EEG powers of all channels were then used as the 
featured input to train a two-class classifier (responder vs. 
non-responder). Fig. 6B compares the classification accuracies 
of all trained classifiers. The RBF-based SVM classifier 
reached the highest accuracy of 73.5±11.2% in classifying EEG 
patterns of responders and non-responders, indicating that the 
frontal theta EEG power at baseline may be useful for 
predicting pretreatment responses. 

VI. SUMMARY 
The healthcare solutions presented in this paper are based on 

the usefulness of the forehead EEG measured through a novel 
wearable EEG device. The use of silicon-based electrodes 
recording EEG from the forehead allows for easy and rapid 
monitoring on an everyday basis. The cases presented in this 
work are examples of the critical contribution of forehead EEG 
activity in various mental processes or pathologies. In addition, 
we have demonstrated the feasibility of the forehead EEG in 
support of healthcare needs such as sleep monitoring, headache 
detection, and depression treatment. Forehead EEG in 
neuroimaging can be used in other everyday applications such 
as detecting the drowsiness during driving, designing 
brain-computer interfaces for disabled people, controlling 
devices and environments, and incorporating a real-time 
neurofeedback for enhancing cognitive functions. However, 
decoding frontal activity may be problematic since multiple 
mental processes activate the same area, which may result in 
unwanted and unintended actions. Hence, spatial resolution is a 
limitation of EEG-based systems, particularly when the 
EEG-based healthcare system relies on an area that is rich in 
subfunctions. The spatiotemporal distributions of brain activity 
and network behavior provide significant psychophysiological 
information. Therefore, it is important to image brain 
functional connectivity to understand brain function. There are 
ongoing advances in practical approaches of brain signal 
recording and sophisticated designs of extracting knowledge 
from neuro-information in the brain; home healthcare solutions 
are envisioned to guide to a wide range of real-life applications 
in the near future. 
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