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Abstract—This paper addresses the problem of driving robotic
sensors for an energy-constrained mobile wireless network in
efficiently monitoring and predicting spatial phenomena, under
data locational errors. The paper first discusses how errors
of mobile sensor locations affect estimating and predicting the
spatial physical processes, given that spatial field to be monitored
is modeled by a Gaussian process. It then proposes an optimality
criterion for designing optimal sampling paths for the mobile
robotic sensors given the localization uncertainties. Although the
optimization problem is optimally intractable, it can be resolved
by a polynomial approximation algorithm, which is proved to
be practically feasible in an energy-constrained mobile sensor
network. More importantly, near-optimal solutions of this navi-
gation problem are guaranteed by a lower bound within 1—(1/¢)
of the optimum. The performance of the proposed approach is
evaluated on simulated and real-world data sets, where impact
of sensor location errors on the results is demonstrated by
comparing the results with those obtained by using noise-less
data locations.

Index Terms—Mobile robotic wireless sensor networks, spatial
prediction, Gaussian processes, locational errors.

I. INTRODUCTION

Recently, technological developments in micro-electro-
mechanical systems and wireless communications allow mo-
bile robotic wireless sensor networks (MRWSNs) to have
significant impact on monitoring spatial phenomena such as
exploring ecosystem change in ocean and on land, observing
toxic pollutants and detecting forest fires [1]-[3]. Advantages
of the MRWSNs as compared with stationary wireless sensor
networks consist of constantly adapting to the changes in
the environment and robustly responding to node failures.
Moreover, a wireless sensor network incorporating in mobile
robotic platforms is capable of being designed strategies to
optimally capture the spatial physical phenomena of interest.

In addition to collecting the data, the MRWSNs are also
competent to estimate and predict the spatial phenomenon
at unobserved locations by combining the available measure-
ments with a model. For instance, in [1] Leonard et al.
employed a linear model to predict an ocean field. By defining
a graph whose vertices and edges are considered as a single
robot’s visiting locations and moving paths, respectively, a
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path planning algorithm for a mobile robot was proposed in
[4] so as to maximize information gain from measurements
of a spatio-temporal phenomenon. Choi et al. [5] introduced
a Kalman filter based technique to learn the parameters of
a physical spatio-temporal process model and then presented
criteria to navigate mobile sensors throughout an environment
in order to maximize a specified performance. In [6] Wu et
al. proposed a switching scheme for a team of mobile sensors
to switch between individual exploration and cooperative
exploration as they were exploring an unknown environment.
Nevertheless, in most mentioned works, the use of the linear
models is disadvantageous as its parameters must be known
a priori [7]. Therefore, in this work, we propose to utilize a
non-parametric data-driven model, Gaussian process (GP) [8],
to statistically model the spatial phenomena.

In the context of a non-parametric model, Suh et al. by their
work [9] represented an environmental monitoring navigation
strategy for a sensing robot, in which the information gain
along the robot’s trajectory is maximized. In [10] Cortés pro-
posed a distributed Kriged Kalman filter for robotic wireless
sensors in which a gradient based controller was designed to
drive the mobile wireless sensors to take optimal samples so
that the variance of the estimate error is decreased. Xu et al.
primarily used the GP regression for estimating and predicting
the generally scalar field and designed optimality criteria based
on the Fisher information matrix [11] and the average of the
prediction error variances [12] for the optimal sampling paths
of the MRWSNs. The authors in [13] introduced the Bayesian
optimization based technique for the purpose of choosing the
much more relevant informative locations for mobile robotic
wireless sensors (MRWSs) in the GP modeled field. However,
in most previous works on the spatial prediction in the
MRWSNESs, there exist two fundamental issues: (i) the networks
have been supposed to have the true sensing locations, i.e.
location uncertainties are ignored; and (ii) the bounds of solu-
tions of sampling algorithms in energy-constrained MRWSNs
have not been analysed.

In fact, precise localization of mobile wireless sensors has
been assumed in various applications. For example, in the GP
regression, data locations are an essential input component
of Gaussian predictive inference. Nonetheless, due to some
reasons such as imprecise positioning instruments, coordinate
rounding or human based reading error, especially in the
MRWSNs where mobility generally increases the uncertainty
of sensor nodes, identifying the true sensor locations is very
challenging [14]. Moreover, most of the localization algo-
rithms in the wireless sensor networks such as the anchor-



based method [15] and the beacon-assisted technique [16]
generally require the global positioning systems (GPSs). While
the GPSs cannot work indoor or in the presence of obstacles
[17], it is not cost effective [18]. Inexpensive GPSs normally
in turn give significant locational errors. Therefore, in practice,
there potentially exist the errors at the sensing locations in the
energy-constrained MRWSNS. In the spatial prediction, since
the data locations are utilized to compute covariance and cross-
covariance matrices and spatial trend, the uncertainties at the
sampling locations definitely affect on prediction results.

Motivated by the aforementioned problems, we consider sta-
tistical incorporation of the locational errors into the Gaussian
spatial prediction and estimation. In fact, this idea has been
presented in [2] where Mysorewala et al. introduced a neural
network and an extended Kalman filter (EKF) for monitoring
environments. The EKF enables the authors to account for
the locational errors on results. Nevertheless, their proposed
approach is based on a parametric radial basis function model,
which is not really flexible with respect to highly complex
real-world physical fields.

As a result, in this paper, we present how the errors at the
data locations are statistically incorporated into predicting and
estimating the spatial fields modeled by a non-parametric GP.
Further, the fundamental scheme monitoring and predicting
spatial fields using the MRWSNSs is to informatively find the
optimal navigation. Thus, we formulate an adaptive sampling
optimization problem in terms of minimum average variance
criteria, where sensor location uncertainties are comprised.
This combinatorial NP-hard sampling optimality criterion is
then improved to significantly reduce computational time in
greedy algorithm implementation. Moreover, the near-optimal
solutions of the sampling optimization obtained by a greedy
algorithm are proved to be guaranteed by a lower bound that
performs a level 1 — (1/e) of the optimal solution. An upper
bound for any other methods can be found from our near-
optimal solution.

The remainder of this paper is organized as follows. Section
IT discusses a predictive inference approach for the spatial
field where the errors at sensor locations are considered. To
enhance quality of spatial prediction, a sampling strategy for
the MRWSs is designed in Section III. A bound of solutions
is also presented in this section. Sections IV evaluates the
proposed approach by simulation results before conclusions
are drawn in Section V.

II. SPATIAL PREDICTIVE INFERENCE UNDER LOCATIONAL
ERRORS

In most applications of environmental monitoring using the
WSNSs [19]-[21] we suppose that devices that are utilized to
measure the sensor locations work impeccably. Nonetheless,
in practice, there exist availabilities of spatial uncertainty
associated with those data locations. On the other hand, as
represented in our previous work [21], the data locations are
significantly employed to compute the covariates at locations,
as well as the spatial covariance function. In equivalent words,
the spatial prediction cannot be obtained without the sensing
positions. This shows that the location errors have potentially

serious effect on results of model parameter estimation and
prediction quality. Hence, in this section, we introduce how
the errors of the measuring locations affect on estimating and
predicting the spatial phenomena.

Consider a mobile network of N identical sensors, indexed
by i € {1,..., N}, spatially distributed in the spatial field of
interest @ C R, where each mobile sensor can gather data
at times ¢ € Zso. Let s;; denote an intended location for
a mobile sensor ¢ at time step ¢, identified by a positioning
instrument. Due to imprecision of the device, we define r;;
as a real but unidentified location where the sensor is actually
positioned. As discussed in [22], a mobile agent’s location
error is given by

Tii = St T Viis (D

where v;; is a locational error. In two dimension environ-
ments, 7 ; is supposed to be an uncorrelated bivariate normal
distribution with a zero mean and a variance o2 as specified
by
Tt,i ™~ N(()? 0212)7

where I is a 2 x 2 identity matrix. Note that errors at different
locations are independent, and +; ; is independent of r; ; and
st;. We assume that y; = y; ; is constant over time. If f(v;)
denotes a probability density function of v; = (Vi z,Vi,y), it
is specified as
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By the use of the spatial field model introduced in [21],
the spatial process gathered by the sensor 7 at time instant ¢
is now formally described under consideration of the location
errors as follows

Yri = X (st +7)B80 +&(se0 + i) +elsei+v), (2

where y;; is a measurement taken at r; but erroneously
positioned at s; ;. £(s¢; + ;) is a zero mean stationary GP,
(st +:) is an independent and identically distributed noise
with a zero mean and a variance (7;)% X(s;; + i) is
covariates at a location r;; and 3} is a vector of p mean
parameters. Both 37 and (7;)? are learned by incorporating
the errors in locations into data locations. Since means of
&(sti + i) and e(sg; + ;) are zero, expectation of Yl s
1 (s¢,:), can be given as

p(se) = BG2) = ([ Xlows 0 e ) 7. @)

Now, we consider how to compute the covariance function
under presence of the locational uncertainties. Because the data
locations participate in the covariance function, under distri-
bution of the locational errors the covariance value between
s¢,; and s, ;, affected by the uncertainties of locations, can be
easily derived by

cov™ (¢4, 8¢,5) = cov(Se; + Vi, St.j + ;) )
= //cov(sm —s¢5+ v — ) f (i) f ) dvadryg,

where cov(+) is a covariance function [23].



The variance of the spatial process at a location s;; as
shown by Cressie et al. in [24] includes three components
of spatial dependence, measurement error and trend, specified
by

var*(sy;) = cov(0) + (7}*)2 + (Bf)TT(st,i)Bt*. (5)

Element of the spatial dependence is clearly computed by the
covariance function, cov(0), where 0 is a zero vector. The
measurement error (7;°)? can be estimated by measurements.
And, since the locational error impacts on covariates of com-
puting the spatial trend [21], this error is also transferred to the
variance. Moreover, element of the spatial trend is described
by (B8;)TT(sy:)B5, where T(s;,;) is given by

T(st) = /X(St,i + %)X (se,i + %) " f(v)dvs (6)

- (/X(st,i +%)f(%:)d%') </X(S“’ +%)f(%)d%>T.

Notice that if 7; = 0, then T'(s; ;) = 0.

It can be obviously seen that integrating equations (3), (4)
and (6) is analytically intractable. As a consequence, these
equations can be numerically estimated by the use of Monte
Carlo approaches [25]. The idea behind the Monte Carlo
methods is to draw a number of samples for the distribution
of f(7;), then the integral can be approximated by averaging
samples of the function inside the integral at corresponding
sampled points of f(7;).

In the following, we present how to estimate and predict
the spatial process under incorporation of sensing location
errors. Let z*(w) (hereafter z*) denote the spatial variables
at unobserved locations w = (wi,wd,...,wl)T. We define
collection of all identified sensor locations and collective
measurements from time 1 to ¢t as sj.; (correspondingly real
and unknown locations r1.;) and yj.,. Given yj., measured
at r1.; but erroneously at s1.;, we expect to efficiently predict
z*(w). Using the principle of the scheme in [21], the posterior
distribution of the random variables z* is Gaussian, described
by

Z*|yik:t ~ N (MZ*‘yI;t’Ez*‘yf:t) ’ (7)

where the vector of the conditional mean is given as

Hzxlyr, = X(w)B + ZZ*yI:k( T:t)_l (Y7 — X" (s1:4)8() s

®)
and the matrix of the conditional covariances is specified as
-1
Zz*|yit = grar — Zz*yit (Zit) ny:tZ*' ©)

In equations (8) and (9), X (w) is a m X p matrix of covari-
ates at the unmeasured locations w, and the matrix EZ*yT:t
(=(Ey:,2+)T) is a m x tN cross-covariance matrix between
z* and yi.,. X ,«,~ 1S @ m X m covariance matrix of z*. X7,
is a tN x tN covariance matrix of yj., of which off-diagonal
elements can be computed by (4) and diagonal elements can
be obtained by (5). Each row of X*(s1.;) can be obtained by
J X (st.i + i) f(vi)di

In order to illustrate the effect of the presence of sensor
location errors on the spatial prediction, we utilize a true
spatial field in Fig. 1, where the field is generated by a
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Fig. 1: The true field of numerically generated data.

GP model with a mean of § = 20. A marginal variance
o2 a range parameter ¢, a noise variance 72 and a Matérn
smoothness of a Matérn covariance function are set to 4.0,
7.0, 0.1 and 1, respectively. After gathering 50 measurements,
we first estimate the parameters of the spatial model by the
use of the maximum likelihood technique [26], and results
are demonstrated in Table 1. The third column represents
the estimated parameters without locational errors and the
columns right to it represent the estimated parameters with
different errors. Here, three uncorrelated bivariate normal
distributions of the location errors with a similar zero mean
and variances af of 12, 22 and 32 are studied. It can be
seen that the estimations of mean parameters and marginal
variances are minimally affected by the locational errors.
On the contrary, estimated range parameters are significantly
affected by these errors. This leads to decrease of correlations
of random variables in the field, which potentially affects
the predictions at unobserved locations. Empirically using the
model parameters, we then predict the physical phenomena
at unmeasured locations on a 100 x 100 grid covering the
whole region. Four scenarios are considered. Firstly, the
posterior means are predicted, assuming no locational errors.
The predicted field is demonstrated in Fig. 2a. Secondly, the
predicted means with different location errors are analyzed.
The corresponding predicted means are shown in Figures 2b,
2c and 2d, respectively. Generally, the predicted fields in Fig.
2 are comparable with the true field in Fig. 1. However, the
contrast between them is obvious. For instance, when zero or
small locational errors are incorporated into the predictions,
there are much variation on surface of the field in Figures 2a
and 2b, which reasonably match with the true field. In contrast,
as the increase of the uncertainties in locations, the surface of
the predicted field becomes smoother and abstract.

III. ADAPTIVE SAMPLING UNDER LOCATIONAL ERRORS

One of the fundamental questions in the MRWSNSs is to
drive the mobile sensors to effectively sample the phenom-
ena. In other words, given a limited number of the mobile
agents, there is a need to design optimal sampling paths so
that sensing robots can capture the physical environment at
the most informative locations. And, eventually, the network
converges to the best estimation of the model parameters
and the best prediction of the field at unobserved locations.
More importantly, under the presence of the errors in sensing
locations, these requirements are more complicated. Therefore,
in this section, we present a strategy for the MRWSs at time
step ¢ to be able to adaptively sample the field at time instant



TABLE I: PARAMETER ESTIMATION

Estimated model parameters
Without With location errors of zero mean and
Parameters Real values of parameters . .
location standard deviation
errors e =1 Oe =2 Oe =3
20.000 21.231 21.244 21.374 21.348
o? 4.000 4.558 4.435 4.260 4.519
7.000 8.296 8.437 9.734 10.893
2 0.100 0.093 0.007 0.00001 0.00001
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Fig. 2: Predicted field using 50 measurements (a) without locational errors, (b) 02 = 12, (c) 02 = 22 and (d) 02 = 32.

t + 1. The strategy is studied under the effect of the sensor
location errors.

A. One-step-ahead Inference

It can be clearly seen that looking for the most informative
locations s;11 at time instant ¢ + 1 without y; 1 or y; 4
is intractable. Hence, in order to address this problem, the
one-step-ahead forecast is utilized to predict the latent spatial
values at time ¢ + 1, given the collective observations up to
time t. The measurements collected by N MRWSs at time
step ¢ + 1 can be represented as

Yir1 =z T 6, (10)

where ¢ ~ N(0,(7;)%1;11) is a vector of independent and
identically distributed noises, and I;4; is a N x N identity
matrix. z;,; are noise-free observations (also known as latent
random field). Given observations under the presence of the
locational errors up to time ¢, yj.,, the latent random process
at time step ¢ + 1 can be forecasted by

ZilYie = 24 Yl + et (11)
where z/ |y}, is the random field at time ¢ and can be
computed by (7). m11 ~ N(0,02,.1;41) and o2, is a
system error that describes the changes in the elements of
the parameters vector between times ¢ and ¢ + 1. Therefore,
the forecasted measurements at time ¢ + 1 conditioned on y7.;
are

y;+1|yik:t NN(u?+1,Ef+1), (12)

where the posterior mean vector, iy, 1, can be obtained by
applying (8), and the posterior covariance matrix is

13)

_ —1
L‘l 7Ey2‘+1y;‘«+1 - Eyhlyit( Tit) ny:ty?+1
+(02ys + (7)) Tt

In (13), Xy- . 1s @ N X N covariance matrix of v, ,,

Yy gy (=(Bys 4+ )T)isa N xtN cross-covariance matrix
Yit1Y1: . yl:tyt+1*

between yf,; and yj,. BOth.Eyi‘Hyi‘H a.nd Eyfﬂyit_ are

calculated based on next locations s;+; with the locational

error ; for each sensor.

B. Navigation Strategy

In order to design the sampling navigation for the mobile
sensor network, we first discretize the spatial field Q into V'
spatial areas of interest with small neighbours. We define M
as cardinality of V. Let S and Z denote the set of locations
and the vector of latent variables at circumcentres [27] of V
spatial areas. We then address the optimization of the sampling
paths for the MRWSNs that approximately drive the mobile
agents on the lattice of vertices at the circumcentres of V. The
optimal sampling scheme aims to minimize the uncertainties
at all unmeasured locations over the region. It can be noted
that the discretization of the field guarantees that M > N.

Now, let us consider the uncertainties at unobserved loca-
tions of S. If tN < M, that is the number of locations that the
mobile sensors have visited is trivial as compared with M, the
covariance matrix of the random variables Z, conditioned on



collective measurements up to time t+1, y7,,,1 = Y74 Ugﬁrl,
can be predicted by

S2lytnn = 222 = Szur,,,(Clas) T Byp,,, 2, (14)

where
*
N 1:t Zyik:ty:+1
1:t4+1 — i i o )
Yir1Yi:e t+1
= Ty ;
and .Zlei‘;tH (f(Eyi‘;t+1Z) ) is a M x t(N' + 1) cross-
covariance matrix between Z and y7,,, ;. In equivalent words,
Y zy+ ., can also be evaluated by
1:t+1

EZyI:t-#l = I:EZyi":t EZy;*+1] :

Though we do not have the model parameters at time ¢ + 1,
both ¥z, and ¥ Zy;,, can be obtained based on the hyper-
parameters learned at ¢. In order to maximize the quality of
prediction at all unmeasured locations, the sampling problem
is formulated into finding the next sensor locations s;4; at
time ¢ + 1 so that average of trace of the matrix ZZ‘yI:t+1
is minimized. In other words, the formulated problem in the
sampling strategy is to minimize the average of variances at all
unobserved locations. Since Xz is dependent on the locations
in S and the model parameters learned at current step, 7z
is constant at time step ¢. Consequently, the problem of the
sampling strategy can be represented as

opt 1 * —1

Sghq = argmax Mtr (Eny;t+1( Tis1) Zyi‘;t+1z) ,
seq1 € S

t+1,2 i

15)
where S\ C S is a discrete set of locations bounded by Qgt).
Here, Qgt) is the allowable movement region of robotic sensor

¢ attime t+1 [21]. QZ(-t) is developed based on the contraction
and Voronoi concepts [27], which preserve the safe navigation
of the MRWSNSs, and the maximum distance a mobile sensor
can move between time instances.

Selecting an optimal subset sfﬁtl out of all potential lo-
cations in S to optimize the problem (15), as proved by
Ko et al. [28], is combinatorial NP-hard. This optimization
can often be effectively resolved by a near-optimal greedy
heuristic algorithm. Nonetheless, since M > N, the energy-
constrained networks of mobile robotic wireless sensors can
intractably run the greedy algorithm to address the problem
(15). This computational complexity can be demonstrated by
the following theorem.

Theorem 1: The greedy algorithm can resolve the optimiza-
tion problem (15) in time O(tM?2N?).

Proof: Tt can be seen that the main cost of the problem
(15) is to compute multiplying Xz,:  (37,1) "2y, 2.
This cost requires O(tM?N) operations. Furthermore, in the
adaptive sampling navigation scheme, there is a need to find
N next sensor locations at every time instant. This makes the
greedy algorithm run N iterations in time O(N). Hence, the
optimization problem (15) can be resolved in computing time
O(tM2N?). [ ]

Due to the intractability of the problem (15) in the energy-
constrained MRWSNSs, in this study, we enhance the fea-
sibility of this optimization by using one of properties of

trace of a product of matrices. Note that as shown in [29],
tr(AB) = tr(BA). As a result, the optimality criterion (15)
can be restated as follows.

1 o
Mtr (Ey;tﬂzzz‘y;tﬂ( Tea1) )7

(16)
The equivalent optimization problem (16) is more tractable.
Theorem 2: The near-optimal solution of the optimality
criterion (16) can be obtained by a greedy heuristic algorithm
in time O(tMN3).

Proof: The proof is similar and referred to the proof of the
Theorem 1. However, it is noted that the computational com-
plexity of matrix Ey;:HlZEzyl*:Hl(Zit_i_l)*l is O(tMN?).

|
This new proposition in turn gives a significant benefit in
terms of computation to the mobile sensor networks. The
effectiveness of this improvement will be illustrated in the
result sections.
It is to be noted that the location s{%"| ; for the i*" mobile
sensor at time ¢+ 1 must be selected from one of all potential
St+1,; points inside Si(t) bounded by QZ@. The solution of (16)

is obtained if all Sfﬁ,i locations are found in the correspond-

opt _
Sgrq = argmax

t
St+1,i € Sz( )

ing regions Qz(-t). Nevertheless, s?ﬁtl cannot be really found
due to the NP-hard complete of the problem (16). Here, we
present an efficient algorithm which approximately finds the
near-optimal sampling points 5;4; for the mobile sensors by
greedily adding the next sensor locations.

1) Algorithmic approach: Let Z, denote the vector of

the variables at unobserved spatial sites inside Qgt) and
N

Zaow = U Zg e denote the variables at unmeasured locations
i=1 "
in all the allowable movement regions of a N mobile sensors

N
network. We also define S) = | J Si(t).
i=1
At each time step ¢, it starts from an empty set of locations,

S5¢+1 = @, that corresponds to the empty set of predicted
measurements at time step ¢t + 1, g 11 = ©. We first compute
1 -1
Mtr (Eyf:tJrlZEZyT:tJrl (Eiit+1) ) ) (17
where y;, | = {@Jrl’j}t, and Z’?H,j € Zaw . Note that @?ﬂ,j
can be found by applying (12). It returns a vector of average
traces. Choose the maximum value from this vector, we then
easily obtain ¥, ; and the corresponding location Sty ;.
If 5441, is inside Ql(-t), it is certainly the next location for
sensor i. Both 7y, ; ; and S;1; ; are then added to 3, and
St41, respectively; and the latent variable vector Z, ) and the

set Si(t) in Ql(-t) are removed from Zg ) and S®). Tteratively,
we run this iteration of the algorithm until 5,4, reaches to
cardinality, IN. At each iteration, the solution %3, ; and the
corresponding location 5;;; found are greedily added to
Yiy1 and 5y, respectively. If the current resulting location

5i41,; is identified as an element of Si(t), then Si(t) and the
corresponding vector Z, ) are removed from S ®) and Zq).
The navigation strateéy is algorithmically summarized in

Algorithm 1.



Algorithm 1 Algorithmic approach for finding sampling lo-
cations

¥ H_ ] e®
Input: y7; Zow = U Zgms SO = S,
, =

=1 ° %

Output: Next sensor locations Sy
At start, do
5141 QP = O
1: while cardinality of 5,11 < N do do

2: @?_;'_17]' S ZQ(t)
1 _
3: Compute F' = ;tr (Eyi«:t+leny:t+1(Zik:t+1) 1)
4: y;‘HJ < argmax F
Uit1,;€ 201
—x —x% %
5 Yir1 < Yep1 Y15

5i41,5 < argmax F
Sk+1yj€Q,(it)
o — t
if St+1,5 € Q,E ) then
Sgp1 < Ser1USep15

o S® g\ g
10: ZQ(t) < ZQ(t) \ZQSt)
11 end if '

12: end while

C. A Solution Bound

As discussed in the previous subsection III-B, finding the
optimal solution sto_p:l for the proposed criterion (16) is in-
tractable, particularly in the energy-constrained robotic sensor
networks. Nonetheless, a near-optimal but not yet guaranteed
solution can be obtained by a greedy heuristic algorithm in
polynomial time. In this section, we introduce a bound for the
found solution.

As presented by Nemhauser et al. in [30], a greedily
resolved solution can be bounded if the set function in (16)
holds both the monotonicity and submodularity properties.
Therefore, we first define

1
F(st41) = Mtr (ZyiHlZzZyI:Hl(Eitﬂ)_l) ) (18)
where s, is the set of next locations of mobile agents at time
t + 1, and show that the set function F'(s;11) is monotonic
and submodular.

Lemma 3: The set function s;y; — F(s¢41) is monotonic.

Proof: We let A= Eyiﬂ_lzzzyiﬂ_l, B = ( ik:tJrl)_l
and W = AB. If we can show that 1V is positive semi-definite,
tr(W) is monotonic.

It can be clearly seen that since X» =z and X7,

are cross-covariance and covariance matrices, A and B are
1

positive semi-definite. Let P = (AE)_ ABA?. Because A

is non-singular, Az is non-singular. As a consequence, W and
P are similar. P can be rewritten as P = A2 BA2. Since B is
positive semi-definite, then P is also positive semi-definite. As
illustrated in [29] that if W and P are similar, they have the
same eigenvalues. Therefore, having the same eigenvalues of
the positive semi-definite matrix P proves that W is positive
semi-definite.

Suppose that we increase the set s;4; by one sensor
location, s} 41 = St+1 U S¢41, 5, then size of the square matrix

W is increased by one. As the eigenvalues of W is non-
negative, F'(s;, ) > F'(s441), which completes the proof. W
Lemma 4: The set function s;11 — F(s¢4+1) is submodular.
Proof: Tt is known that |s;41] = N. If N = 0 (at
beginning of the greedy algorithm when s;4; is empty), we
define the size of the square matrix W as k x k. Therefore, the
size of W with respect to F'(s¢41) is (k+N)x (k+N), and the
size of W with respect to F'(s; ;) is (k+N+1)x (k+N+1).
Notice that S::Jrl @] St+1 = 82+1 and S£+1 N St4+1 = St+1,5-
Similarly, the size of W with respect to F'(sj,; U s;41) is
(k+N+1)x (k+ N +1), and the size of W with respect
to F(s;,1 Nsip1) is (B4 1) x (k4 1). Consequently, if there
exists a s;,1 C S, it can be clearly seen that the monotone
function F' satisfies

F(sp41) + F(si41) = F(8341Use41) + F (811 NSeq1). (19)

As illustrated by Fujishige in [31], F'(s¢4+1) is submodular. B

Now, utilizing the fundamental results in [30], we can
state that our near-optimal solution addressed by the greedy
algorithm is bounded within 1 — (1/e) of the optimal solution.
That is,

F(5i41) > (1 — i) F(s%). (20)

The guarantee proved in this section not only shows that
the proposed algorithm has a lower bound of 1 — (1/e) as
compared to the optimal solution but also demonstrates that
an upper bound can be obtained from our near-optimal solution
for any other approaches. In other words, any algorithms used
to resolve the combinatorial NP-hard problem (16) is bounded
by an upper bound of (1 — 1) F(5,1.).

IV. RESULTS AND DISCUSSION

In this section, we provide a numerical experiment to
demonstrate the performance of the spatial prediction under
consideration of data locational errors. Moreover, we illustrate
the effectiveness of the proposed adaptive sampling strategy
for a group of mobile wireless sensors.

In this discussion, we consider a situation where, at time
step ¢, all mobile sensors make new observations and transmit
them to the sink via a specific routing tree. Then the base
station computes the centralized sampling strategy and sends
control commands back to each robotic sensor. All predictions
are estimated by the sink. Note that the experiment was
implemented in two dimensional environments.

Consider a realization of the physical quantity generated
within 100 units x 50 units, which serves as ground truth,
shown in Fig. 1. There were five (N = 5) mobile wireless
sensors used with constrained individual displacements of a
maximum radius of 5 units in every time step. All 5 robotic
sensors were started from the pre-defined locations. We have
assumed the knowledge of the system error Ufys = 0.25. The
spatial field was discretized into 10000 small areas, which
were considered as spatially interested sites. Therefore, the
sampling paths were designed on a 10000 lattice. Notice that
the lattice can be regular or irregular. The mean parameters
and the hyperparameters are estimated online at each time
step. We then computed the predicted field and the prediction
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Fig. 3: Predicted fields with (left column) and without (right column) data locational errors at time steps ¢ = 5 (a) and (b),
t =10 (c) and (d), and ¢ = 20 (e) and (f). Range of the fields is illustrated in color bars, which are kept similar in each row.

error variances in the whole environment. The computational
time for achieving the efficient sampling paths for MRWSs
was also analysed.

Due to imprecision of positioning measurement devices, the
sensing locations contain uncertainties. We assume that these
uncertainties have an uncorrelated bivariate normal distribution
with a zero mean and variance o2 = 22. By incorporating these
data locational errors into predicting the physical process at
unmeasured locations, we computed the predicted means and
the prediction error variances by utilizing equations (7) to (9).
Figures 3a, 3c and 3e illustrate the prediction fields at time
steps ¢ = 5, 10 and 20. It can be seen that the predicted means
are approaching the true field as illustrated in Fig. 1 when the
number of the observations increases. White circles in Fig. 4a
show the trajectories of the near-optimal paths of the mobile
wireless sensors up to time ¢ = 20. Fig. 4a also shows that
the closer to observed locations the unmeasured locations are,
the lower their variances are.

For the purpose of comparisons, we then conducted another
experiment in which the predicted fields were obtained by
using the noise-less data locations and the noisy measure-
ments. This computation was carried out based on the analysis
discussed in [21]. The sampling paths for the MRWSs in this
case study were near-optimally found by the strategy proposed
in Section III although the errors at the sensor locations
were assumed zero. The prediction results corresponding to

ignoring the errors in the measurement locations are shown
in the right columns of Fig. 3 for the mean values and Fig.
4 for the variance values. Comparing two columns in Fig.
3, generally, the surfaces of the predicted fields under the
presence of the data locational errors are smoother than those
obtained without considering these location uncertainties. It
can also be clearly seen that the prediction means in Figures
3b, 3d and 3f are more highly comparable with the ground
truth in Fig. 1 than Figures 3a, 3c and 3e. Furthermore, the
prediction variances are more sensitive to the sensing location
errors than the prediction means. As demonstrated in Fig. 4,
in the same scale of color bars, the surface of the predicted
variances in Fig. 4a is worse than that in Fig. 4b. Further, in
Fig. 4a the variances at the sensor locations are greater than
zero, which is not natural if the prediction is experimented
at the true locations as shown in Fig. 4b. This dissimilarity
is seriously caused by the presence of the uncertainties at
the measurement locations, which also means the network
does not know exactly where the mobile agents are located.
On the other hand, let us consider the near-optimal sampling
paths for the robotic sensors obtained by the proposed greedy
algorithm in Fig. 4. Even in two case studies of with and
without incorporating the locational errors into the sampling
path optimization problem both the networks of 5 mobile
sensors start at the same pred-defined starting conditions, the
resulting navigations from time instant ¢ = 2 to time instant
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Fig. 4: The predicted variances in the fields at time ¢ = 20 with (a) and without (b) location errors. The sampling paths for
MRWSs up to time step ¢t = 20 are illustrated by white circles, where current mobile sensor locations are shown in white dots.
Range of the variances is illustrated in color bars in the same scale.
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t = 20 are completely different. The comparative distinctions
of the resulting prediction variances and the sampling paths
in Fig. 4 as well as the predicted means in Fig. 3 illustrate
the significant effect of the presence of the errors in the
sensing locations on the spatial prediction in the mobile sensor
networks.

Another important aspect to compare is the computational
complexity in finding the near-optimal sampling paths for the
robotic sensors. As analysed in Section III, the informative
sampling paths for the MRWSs are formulated to minimize
the average of the predicted variances at all unobserved loca-
tions, which initially leads to the optimization problem (15).
Nevertheless, this issue is then proved to be computationally
expensive. An equivalent but efficient optimality criterion
is proposed and formulated in (16). Theoretically, the new
proposition is practically feasible. Let us investigate both
these navigation optimality criteria in this particular illustrative
experiment. It is to be noted that since the covariance and
cross-covariance matrices are dependent on the measurements,
the run time of the algorithms slightly ascend with the rise of
the number of observations. Take an example, at time step
t = 10, the number of the measurements collected is 50, our
proposed algorithm took approximately 90 seconds to address
the problem (16), whereas the solution of the original problem
(15) required approximately 6 hour run time, implemented on
R V3.0 with a PC of 3.1GHz Intel Core i5-2400 Processor.

In order to show consistency of the proposed method, in
this section, we also implemented our algorithm in a real-
world temperature data set from the Intel Berkeley Research

Lab [32]. There were ten (N = 10) mobile sensors visually
deployed in the region of 40.5 m x 31 m to navigate through
the environment to collect temperature values. The locational
errors in this implementation were assumed to have an uncor-
related bivariate normal distribution with a zero mean and a
variance of 12. We investigated the root mean square errors
(RMSEs), which were computed based on the predicted values
and the actual measurements at spatial locations of interest. As
expected, the prediction errors under considering the locational
errors are worse than those obtained by an assumption of
the true locations. Especially, the more measurements are
collected, the more serious the effect of the presence of the
sensor location errors on the prediction results is. The reason
is that there is more location uncertainties incorporated into
the prediction. Furthermore, the running time to address the
problem (16) in this scenario at time step of 10 is approxi-
mately 125 seconds, implemented on the aforementioned PC.
It is apparent that computational time of the proposed method
grows with an increased number of observations. However, it
is noted that the computing time is practical since the network
may stop collecting data as soon as the prediction accuracy is
reached. For instance, in the realistic scenario implementation,
the RMSEs quickly decline below 0.1 after 10 time instants.

V. CONCLUSION

The paper has presented an efficient method for the MR-
WSNs to monitor and predict the GP based spatial physical
processes, where data locational errors are integrated into the
formulas rather than assuming that sensor locations are true.
In the proposed technique, a sampling optimization criterion
that aims to minimize the average variance is presented to
optimally find the paths for the mobile agents. Though this
navigation problem is intrinsically NP-hard, solving it by a
greedy algorithm is proved to be practically feasible for the
energy-constrained MRWSNSs. The obtained solutions are then
proved to be guaranteed by a level of the performance as
compared with the optimum. The proposed approach is finally
evaluated on numerically generated and real-life data sets in
which effect of localization uncertainties on prediction results
is clearly illustrated. Limitation of the paper is the fact that
the network may be influenced by delay in data transmission.
We are intending to enhance this issue and implement the
algorithm in the realistic tests in the future research works.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

N. E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and
R. Davis, “Collective motion, sensor networks and ocean sampling,”
Proceedings of the IEEE, vol. 95(1), pp. 48-74, 2007.

M. Mysorewala, D. Popa, and F. Lewis, “Multi-scale adaptive sampling
with mobile agents for mapping of forest fires,” Journal of Intelligent
and Robotic Systems, vol. 54(4), pp. 535-565, 2009.

D. V. Le, H. Oh, and S. Yoon, “Environment learning-based coverage
maximization with connectivity constraints in mobile sensor networks,”
IEEE Sensors Journal, vol. 16(10), pp. 3958-3971, 2016.

J. Binney, A. Krause, and G. S. Sukhatme, “Optimizing waypoints for
monitoring spatiotemporal phenomena,” The International of Robotics
Research, vol. 32(8), pp. 873-888, 2013.

J. Choi, J. Lee, and S. Oh, “Swarm intelligence for achieving the global
maximum using spatio-temporal Gaussian processes,” in Proc. American
Control Conference, Washington, USA, June 2008, pp. 135-140.

W. Wu and F. Zhang, “Robust cooperative exploration with a switching
strategy,” IEEE Transactions on Robotics, vol. 28(4), pp. 828 — 839,
2012.

R. Graham and J. Cortes, “Spatial statistics and distributed estimation by
robotic sensor network,” in Proc. IEEE American Control Conference,
Baltimore, MD, USA, 2010, pp. 2422-2427.

C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. The MIT Press, Cambridge, Massachusetts, London, England,
2006.

J. Suh and S. Oh, “Efficient environmental monitoring using cost-aware
path planning,” in Proc. 13th International Conference on Control,
Automation and Systems, Gwangju, Korea, 2013, pp. 1362-1365.

J. Cortés, “Distributed Kriged Kalman filter for spatial estimation,” [EEE
Transactions on Automatic Control, vol. 54, pp. 2816-2827, 2009.

Y. Xu and J. Choi, “Adaptive sampling for learning Gaussian processes
using mobile sensor networks,” Sensors, vol. 11, pp. 3051-3066, 2011.
Y. Xu, J. Choi, S. Dass, and T. Maiti, “Sequential Bayesian prediction
and adaptive sampling algorithms for mobile sensor networks,” IEEE
Transactions on Automatic Control, vol. 57, pp. 2078-2084, 2012.

R. Marchant and F. Ramos, “Bayesian optimization for intelligent
environmental monitoring,” in Proc. IEEE/RSJ International Conferece
on Intelligent Robots and Systems, Algarve, Portugal, October 2012, pp.
2242-2249.

A. Baggio and K. Langendoen, “Monte Carlo localization for mobile
wireless sensor networks,” Ad Hoc Networks, vol. 6(5), pp. 718-733,
2008.

C. Ou and W. He, “Path planning algorithm for mobile anchor-based
localization in wireless sensor networks,” IEEE Sensors Journal, vol.
13(2), pp. 466475, 2013.

J. Rezazadeh, M. Moradi, A. S. Ismail, and E. Dutkiewicz, “Superior
path planning mechanism for mobile beacon-assisted localization in
wireless sensor networks,” IEEE Sensors Journal, vol. 14(9), pp. 3052—
3064, 2014.

X. Ma, M. Zhou, Y. Li, and J. Tan, “Intelligent mobility assisted mobile
sensor network localization,” in Proc. IEEE International Conferece on
Robotics and Automation, Hong Kong, China, June 2014, pp. 1276—
1281.

G. Karthiga, C. Preethi, and R. D. H. Devi, “Localization in wireless
sensor network based on mobile anchor and chord selection,” in Proc.
IEEE International Conference on Communication and Network Tech-
nologies, Sivakasi, India, December 2014, pp. 124-128.

L. V. Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake,
“Mobile robotic wireless sensor networks for efficient spatial prediction,”
in Proc. 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Chicago, IL, USA, September 2014, pp. 1176-1181.

S. Martinez, “Distributed interpolation schemes for field estimation
by mobile sensor networks,” IEEE Transactions on Control Systems
Technology, vol. 18, pp. 491-500, 2010.

L. V. Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake,
“Information-driven adaptive sampling strategy for mobile robotic wire-
less sensor network,” IEEE Transaction on Control Systems Technology,
vol. 24(1), pp. 372-379, 2016.

J. Gabrosek and N. Cressie, “The effect on attribute prediction of
location uncertainty in spatial data,” Geographical Analysis, vol. 34(3),
pp. 262-285, 2002.

J. P. Chiles and P. Delfiner, Geostatistics: Modelling spatial uncertainty.
Wiley, 1999.

N. Cressie and J. Kornak, “Spatial statistics in the presence of loca-
tion error with an application to remote sensing of the environment,”
Statistical Science, vol. 18(4), pp. 436—456, 2002.

[25] G. S. Fishman, Monte Carlo - concepts, algorithms and applications.
Springer, 1996.

P. J. Diggle and P. J. Ribeiro, Model-based geostatistics. Springer, New
York, USA, 2007.

F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic
networks. Princeton University Press, 2009.

C. Ko, J. Lee, and M. Queyranne, “An exact algorithm for maximum
entropy sampling,” Operations Research, vol. 43, pp. 684-691, 1995.
R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University
Press, 1985.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximation for maximizing submodulor set functions - I,” Mathematical
Programming, vol. 14(1), pp. 265-294, 1978.

S. Fujishige, Submodular functions and optimization. Elsevier, 2005.
P. Bodik, C. Guestrin, W. Hong, S. Madden, M. Paskin,
and R. Thibaux, “Intel lab data,” 2004. [Online]. Available:
http://db.csail.mit.edu/labdata/labdata.html

[26]
[27]
[28]
[29]

(30]

[31]
(32]

Linh V. Nguyen (M’15) received Ph.D. degree in engineering from University
of Technology Sydney (UTS), Australia in 2015. He was a Research Associate
at UTS in 2015 and a Research Fellow at Nanyang Technological University,
Singapore in 2016. Currently, he is a Postdoctoral Research Fellow at Centre
for Autonomous Systems, UTS. He is a regular reviewer of top IEEE journals
and conferences. His current research interests include adaptive sampling
methods for spatial prediction, signal processing, machine learning, sensors
and robotics.

Sarath Kodagoda (M’ 10) received B.Sc.Eng.Hons. degree in 1995, specializ-
ing in Electrical Engineering, from the University of Moratuwa, Sri Lanka. He
received his M.Eng. (2000) and Ph.D. (2004) degrees specializing in robotics
from the Nanyang Technological University, Singapore. Before joining the
ARC Centre for Autonomous Systems (CAS) at University of Technology,
Sydney (UTS), he worked as a Design Engineer in a reputed multinational
company. He is currently an Associate Professor and Coordinator of the
Mechanical and Mechatronics program at the University of Technology,
Sydney. His main research contributions are in the areas of autonomous
road vehicles and Human Robot Interaction. He is an Associated Editor,
Programme Committee member and a regular reviewer of a number of top
robotics journals and conference proceedings. His research interests include
infrastructure robotics, human robot Interaction, machine learning, perception,
target tracking and mobile robotics.

Ravindra Ranasinghe (M’97) received B.Sc.Eng.Hons. degree in 1995,
specializing in Computer Science and Engineering, from the University of
Moratuwa, Sri Lanka. He received his Ph.D. (2002) degrees specializing in
wireless communication protocols from the University of Melbourne, Aus-
tralia. He is currently a Senior Research Fellow at the Centre for Autonomous
Systems, University of Technology Sydney. Before joining University of
Technology Sydney, he worked in several technology start-up companies
in USA, Australia and Sri Lanka. His research interests include wireless
communication protocols, wireless sensor networks, mobile robotics wireless
sensor networks, machine learning and assistive robotics.

Gamini Dissanayake (M’06) is the James N Kirby Professor of Mechanical
and Mechatronic Engineering at University of Technology Sydney (UTS).
He leads the UTS Centre for Autonomous System; a team of fifty staff and
students working in Robotics. He graduated in Mechanical and Production
Engineering from the University of Peradeniya, Sri Lanka. He received his
M.Sc. in Machine Tool Technology and Ph.D in Mechanical Engineering
from the University of Birmingham, England. He taught at University of
Peradeniya, Sri Lanka, National University of Singapore and University of
Sydney before joining UTS in 2002. His team has an extensive track record of
industry collaboration on a range of robotic systems with partners including
NSW Roads and Maritime Services, Patrick Technology, Pempek Systems,
Burwell Technology, Meat and Livestock Australia and Sydney Water.



