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Abstract

One fundamental question in the context of the geometric complexity theory approach to the
VP vs. VNP conjecture is whether VP = VP, where VP is the class of families of polynomials
that are of polynomial degree and can be computed by arithmetic circuits of polynomial size, and
VP is the class of families of polynomials that are of polynomial degree and can be approximated
infinitesimally closely by arithmetic circuits of polynomial size. The goal of this article1 is to
study the conjecture in (Mulmuley, FOCS 2012) that VP is not contained in VP.

Towards that end, we introduce three degenerations of VP (i.e., sets of points in VP), namely
the stable degeneration Stable-VP, the Newton degeneration Newton-VP, and the p-definable
one-parameter degeneration VP*. We also introduce analogous degenerations of VNP. We show
that Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VNP, and Stable-VNP = Newton-VNP = VNP* =
VNP. The three notions of degenerations and the proof of this result shed light on the problem
of separating VP from VP.

Although we do not yet construct explicit candidates for the polynomial families in VP \VP,
we prove results which tell us where not to look for such families. Specifically, we demonstrate
that the families in Newton-VP \VP based on semi-invariants of quivers would have to be
non-generic by showing that, for many finite quivers (including some wild ones), any Newton
degeneration of a generic semi-invariant can be computed by a circuit of polynomial size. We
also show that the Newton degenerations of perfect matching Pfaffians, monotone arithmetic
circuits over the reals, and Schur polynomials have polynomial-size circuits.

1 Introduction

One fundamental question in the context of the geometric complexity theory (GCT) approach
(cf. [36,37], [8], and [35]) to the VP vs. VNP conjecture in Valiant [49] is whether VP = VP, where
VP is the class of families of polynomials that are of polynomial degree and can be computed by
arithmetic circuits of polynomial size, VNP is the class of p-definable families of polynomials, and
VP is the class of families of polynomials that are of polynomial degree and can be approximated
infinitesimally closely by arithmetic circuits of polynomial size. We assume in what follows that the
circuits are over an algebraically closed field F. We call VP the closure of VP, and VP \ VP the
boundary of VP. So the question is whether this boundary is non-empty. At present, it is not even
known if VP is contained in VNP.

The VP vs. VP question is important for two reasons. First, all known algebraic lower bounds
for the exact computation of the permanent also hold for its infinitesimally close approximation. For

∗Santa Fe Institute, jgrochow@santafe.edu
†University of Chicago, mulmuley@uchicago.edu
‡University of Technology Sydney, Youming.Qiao@uts.edu.au
1A preliminary version of this paper appears in [20]

1



example, the known quadratic lower bound for the permanent [34] also holds for its infinitesimally
closely approximation [31], and so also the known lower bounds in the algebraic depth-three circuit
models [25]; cf. Appendix B in [19] for a survey of the known lower bounds which emphasizes this
point. These lower bounds hold because some algebraic, polynomial property that is satisfied by the
coefficients of the polynomials computed by the circuits in the restricted class under consideration is
not satisfied by the coefficients of the permanent. Since a polynomial property is a closed condition,2

the same property is also satisfied by the coefficients of the polynomials that can be approximated
infinitesimally closely3 by circuits in the restricted class under consideration. This is why the same
lower bound also holds for infinitesimally close approximation. We expect the same phenomenon
to hold in the unrestricted algebraic circuit model as well. Hence, it is natural to expect that
any realistic proof of the VP 6= VNP conjecture will also show that VNP 6⊆ VP, as conjectured
in [36].4 This is, in fact, the underlying thesis of geometric complexity theory stated in [35]. But, if
VP 6= VP, as conjectured in [35], this would mean that any realistic approach to the VP vs. VNP
conjecture would even have to separate the permanent from the families in VP \ VP with high
circuit complexity.5

Second, it is shown in [35] that, assuming a stronger form of the VNP 6⊆ VP conjecture, the
problem NNL (short for Noether’s Normalization Lemma) of computing the Noether normalization
of explicit varieties can be brought down from EXPSPACE, where it is currently, to P, ignoring a
quasi-prefix. The existing EXPSPACE vs. P gap,6 called the geometric complexity theory (GCT)
chasm [35], in the complexity of NNL may be viewed as the common cause and measure of the
difficulty of the fundamental problems in geometry (NNL) and complexity theory (Hardness). If
VP = VP, then it follows [35] that NNL is in PSPACE. Thus the conjectural inequality between
VP and VP is the main difficulty that needs to be overcome to bring NNL from EXPSPACE to
PSPACE unconditionally, and is the main reason why the standard techniques in complexity theory
may not be expected to work in the context of the VP 6= VNP conjecture.

The goal of this article is to study the conjecture in [35] that VP is not contained in VP.

1.1 Degenerations of VP and VNP

Towards that end, we introduce three notions of degenerations of VP and VNP; “degeneration”
is the standard term in algebraic geometry for a limit point or infinitesimal approximation. These
degenerations are subclasses of VP and VNP, respectively; cf. Section 3 for formal definitions.

The first notion is that of a stable degeneration. Recall [38] that a polynomial f ∈ F[x1, . . . , xm]
is called stable with respect to the natural action of G = SL(m,F) on F[x1, . . . , xm] if the G-orbit of
f is closed in the Zariski topology. If F = C, we may equivalently say closed in the usual complex
topology. Here G is SL(m,F), and not GL(m,F), since the only polynomial in F[x1, . . . , xm] with a
closed orbit with respect to the action of GL(m,F) is identically zero. Hence, whenever we study
issues related to stability in this article, we only consider orbits with respect to the SL-action.

We say that a polynomial f is a stable degeneration of g ∈ F[x1, . . . , xm] if f lies in a closed
G-orbit (which is unique [38]) in the closure of the G-orbit of g. The degeneration is called stable
since f in this case is stable. We say that a polynomial family {fn} is a stable degeneration of {gn}

2It is defined by the vanishing of a continuous function, namely, a (meta) polynomial.
3This means the polynomials are the limits of the polynomials computed by the circuits in the restricted class

under consideration.
4Note that if VNP 6⊆ VP then there exists a polynomial property showing this lower bound.
5Although some lower bounds techniques in the restricted models do distinguish between different polynomials

with high circuit complexity (e.g., [41]), we need a better understanding of the families in VP \VP in order to know
which techniques in this spirit could even potentially be useful in the setting of the VNP versus VP problem.

6Or, the EXPH vs. P gap, assuming the Generalized Riemann Hypothesis.
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if each fn is a stable degeneration of gn, with respect to the action of G = SL(mn,F), where mn

denotes the number of variables in fn and gn. For any class of polynomial families C, the class
Stable-C is defined to be the class of families of polynomials that are either in C or are stable
degenerations thereof.

The second notion is that of a Newton degeneration. We say that a polynomial f is a Newton
degeneration of g if it is obtained from g by keeping only those terms whose associated monomial-
exponents lie in some specified face of the Newton polytope of g. We say that a polynomial family
{fn} is a Newton degeneration of {gn} if each fn is a Newton degeneration of gn. We say that
{fn} is a linear projection of {gn} if each fn is a linear projection of gn.7 For any class of polyno-
mial families C, the class Newton-C is defined to be the class of families of polynomials that are
Newton degenerations of the polynomial families in C, or are linear projections of such Newton
degenerations.8

The third notion, motivated by the notion of p-definability in Valiant [49], is that of a p-
definable one-parameter degeneration. We say that a family {fn} of polynomials is a p-definable
one-parameter degeneration of a family {gn} of polynomials, if fn(x) = limt→0 gn(x, t), where
gn(x, t) is obtained from gn(x) by transforming its variables x = (x1, . . . , xi, . . .) linearly such
that: (1) the entries of the linear transformation matrix are Laurent polynomials in t of possibly
exponential degree (in n), and (2) there exists a small circuit Cn over F of size polynomial in n
such that any coefficient of the Laurent polynomial in any entry of the transformation matrix can
be obtained by evaluating Cn at the indices of that entry and the index of the coefficient. It is
assumed here that the indices are encoded as lists of 0-1 variables, treating 0 and 1 as elements of
F. Thus a p-definable one-parameter degeneration is a one-parameter degeneration of exponential
degree that can be encoded by a small circuit. For any class of polynomial families C, the class C* is
defined to be the class of families of polynomials that are p-definable one-parameter degenerations
of the families in C.

The classes VP and VNP are closed under these three types of degenerations (cf. Proposi-
tions 3.2, 3.3, 3.6). Since we want to compare VP with VP, and VNP with VNP, we ask how VP
and VNP behave under these degenerations. This is addressed in the following result.

Theorem 1. (a) Stable-VNP = Newton-VNP = VNP* = VNP, and
(b) Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VNP.

An analogue of this result also holds for VPws, the class of families of polynomials that can be
computed by symbolic determinants of polynomial size.

1.2 On VP* vs. VP and VP vs. Stable-VP

The statement of Theorem 1 tells us nothing as to whether any of the inclusions in the sequence
VP ⊆ Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VP can be expected to be strict or not. But its proof, as
discussed below, does shed light on this subject.

Theorem 1 is proved by combining the Hilbert-Mumford-Kempf criterion for stability [26] with
the ideas and results in Valiant [49]. The Hilbert-Mumford-Kempf criterion [26] shows that, for any
polynomial f in the unique closed G-orbit in the G-orbit-closure of any g ∈ F[x1, . . . , xm], with
G = SL(m,F), there exists a one-parameter subgroup of G that drives g to f . Furthermore, by

7This means fn is obtained from gn by a linear (possibly non-homogeneous) change of variables.
8Taking a Newton degeneration and a linear projection need not commute, so the set of Newton degenerations

alone will not in general be closed under linear projections. For example, any polynomial f is a linear projection of
a sufficiently large determinant, but the Newton degenerations of the determinant only consist of polynomials of the
form det(X ′) where X ′ is matrix consisting only of variables and 0s.
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Kempf [26], such a subgroup can be chosen in a canonical manner. As a byproduct of the proof
of Theorem 1, we get a complexity-theoretic form of this criterion (cf. Theorem 7), which shows
that such a one-parameter group can be chosen so that the resulting one-parameter degeneration
of any {gn} ∈ VP to {fn} ∈ Stable-VP is p-definable. Here fn is a stable degeneration of gn with
respect to the action of SL(mn,F), where mn = poly(n) denotes the number of variables in fn and
gn. Thus the inclusion of Stable-VP in VNP ultimately depends on the existence of a p-definable
one parameter degeneration of {gn} to {fn}, as provided by the Hilbert-Mumford-Kempf criterion.

However, no such p-definable one parameter degeneration scheme is known if fn is allowed to
be any polynomial with a non-closed SL(mn,F)-orbit in the SL(mn,F)-orbit-closure of gn, or any
polynomial in the GL(mn,F)-orbit closure of gn, regardless of whether the SL(mn,F)-orbit of fn is
closed or not. Here we consider closedness of the orbits in the GL(mn,F)-orbit-closure of gn with
respect to the action of SL(mn,F), not GL(mn,F), since, as pointed out in Section 1.1, closedness
with respect to the GL-action is not interesting. In other words, we consider the SL(mn,F)- as well
as the GL(mn,F)-orbit-closure of gn as an affine G-variety, with G = SL(mn,F).

In the context of the VP vs. VP problem, one has to consider the GL(mn,F)-orbit closure
of gn, since infinitesimally close approximation involves GL-transformations. The GL(mn,F)-orbit
closures can be much harder than the SL(mn,F)-orbit-closures. For example, if gn is the deter-
minant, its SL(mn,F)-orbit is already closed [36], and hence, one really needs to understand its
GL(mn,F)-orbit closure.

If a p-definable one parameter degeneration scheme, akin to the Hilbert-Mumford-Kempf cri-
terion for stability, exists when fn is allowed to be any polynomial in the GL(mn,F)-orbit-closure
of gn, {gn} ∈ VP, then it would follow that VP ⊆ VP*, and in conjunction with Theorem 1, that
VP ⊆ VNP. This is one plausible approach to show that VP ⊆ VNP, if this is true.9 If, on the other
hand, no such p-definable one parameter degeneration scheme exists when fn is allowed to be any
polynomial in the GL(mn,F)-orbit-closure of gn, {gn} ∈ VP, then it would be a strong indication
that VP is not contained in VP*, and hence, also not in VP. This would open one possible route
to formally separate VP from VP.

All the evidence at hand does, in fact, suggest that such a general scheme may not exist for
the following reasons. First, as explained in [38] in detail, the Hilbert-Mumford-Kempf criterion for
stability is intimately related to, and in fact, goes hand in hand with another fundamental result in
geometric invariant theory that, given any finite dimensional G-representation, or more generally,
an affine G-variety X, G = SL(m,F), the closed G-orbits in X are in one-to-one correspondence
with the points of the algebraic variety X/G = spec(F[X]G), called the categorical quotient.10 By
definition, this is the algebraic variety whose coordinate ring is F[X]G, the subring of G-invariants
in the coordinate ring F[X] of X. But the set of all G-orbits in X does not, in general, have such a
natural structure of an algebraic variety [38]. This is why the book [38] focuses on closed G-orbits
in the construction of the various moduli spaces in algebraic geometry.

Second, from the complexity-theoretic perspective, the algebraic structure of the set of all G-
orbits in X seems much harder, in general, than that of the set of closed G-orbits. For example,
it is shown in [35] that, if X is a finite dimensional representation of G, then the set of closed
G-orbits in X has a (quasi) explicit system of parametrization (by a small number of algebraic
circuits of small size), assuming that (a) the categorical quotient X/G is explicit (as conjectured
in [35] on the basis of the algorithmic results therein), and (b) the permanent is hard. In contrast,
it may be conjectured that the set of all G-orbits in X does not, in general, have an explicit
or even a small system of parametrization (by algebraic circuits with +,−, ∗, /, and equality-test

9In this case, separating VP from VP would be stronger than separating VP from VNP.
10By spec here, we really mean, by abuse of notation, max-spec.
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gates), since Noether’s Normalization Lemma, which plays a crucial role in the parametrization of
closed G-orbits, applies only to algebraic varieties. (The division and equality-test gates are needed
here, since without them, the outputs of the circuits, being constant on all G-orbits, will be G-
invariant polynomials that cannot distinguish a non-closed G-orbit from a G-orbit in its closure.
By a general result in [42], all G-orbits in X can be parametrized, in principle, by a finite number
of algebraic circuits of finite size over the coordinates of X, with +,−, ∗, /, and equality-test gates.)
Formally, the conjecture is that there do not exist for every finite dimensional representation X of
G = SL(m,F), poly(l,m) algebraic circuits of poly(l,m) size 11, l = dim(X), over the coordinates
x1, . . . , xl of X, with constants in F and gates for +,−, ∗, /, and equality-test, such that the outputs
of these circuits at the coordinates of any two points v, w ∈ X are identical iff v and w are in the
same G-orbit. (The gates for division and equality-test are not needed for parametrization of closed
G-orbits in [35].)

A concrete case that illustrates well the difference between closed G-orbits and all G-orbits is
when X = Mm(F)r, the space of r-tuples of m×m matrices, with the conjugate (adjoint) action of
G = SL(m,F). In this case it is known unconditionally that the set of closed G-orbits in X has a
quasi-explicit (i.e., quasi-poly(m, r)-time computable) parametrization when the characteristic p of
F is not in [2, bm/2c]; cf. [35] and [15] for charactetristic zero, and [35] for positive characteristic.
In contrast, the best known parametrization [16] of all G-orbits in Mm(F)r (allowing division and
equality-test gates in the algebraic circuits) has exponential complexity. The known algorithm [46]
for constructing a canonical normal form of a matrix tuple in Mm(F)r with respect to the G-action
also has exponential complexity, 12 (though the problem of deciding if two points in Mm(F)r are in
the same G-orbit is in P [5, 9, 23]). The exponential complexity of parametrization of all G-orbits
in Mm(F)r may be inherent, since the problem of clasifying all G-orbits in Mm(F)r is wild [11],
when r ≥ 2. Wildness [3, 13] is a universality property in representation theory, analogous to NP-
completeness. The situation gets even wilder when X is a general G-representation or an affine
G-variety. For example, it is known [2] that the problem of classifying all G-orbits in Fm⊗Fm⊗Fm
contains, but is not contained in the wild problem of classifying all G-orbits in Mm(F)r.

In view of such a fundamental difference between the algebraic structures of the set of closed
G-orbits and the set of all G-orbits, from the mathematical as well as the complexity-theoretic
perspectives, it may be conjectured that a p-definable one-parameter degeneration from {gn} ∈ VP
to {fn}, with fn in the GL(mn,F)- or SL(mn,F)-orbit closure of gn, does not always exist if the
G-orbit of fn, with G = SL(mn,F), is not required to be closed. If so, this would be a strong
indication, as pointed out above, that VP is not contained in VP*, and hence, also not in VP.

The complexity-theoretic form of the Hilbert-Mumford-Kempf criterion proved in this article
(Theorem 7) also provides an exponential (in n) upper bound on the degree of the canonical Kempf-
one-parameter subgroup that drives gn to fn, with {gn} ∈ VP and {fn} ∈ Stable-VP, where fn is a
stable degeneration of gn. This canonical Kempf-one-parameter subgroup is known to be the fastest
way to approach a closed orbit [27]. If one could prove a polynomial upper bound on this degree,
then it would follow that Stable-VP = VP (cf. Lemma 4.3). On the other hand, if a worst-case
super-polynomial lower bound on this degree can be proved, then it would be a strong indication
that Stable-VP, and hence VP, are different from VP. This would open another possible route to
formally separate VP from VP.

11Here the size means the total number of nodes in the circuit. There is no restriction on the bit-lengths of the
constants.

12This is because the algorithm in [46] needs factorization of univariate polynomials over extension fields of possibly
exponential rank over the base field of definition of the input.
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1.3 On the problem of explicit construction

Next we ask if one can construct an explicit family in Newton-VPws that can reasonably be con-
jectured to be not in VPws or even VP. With this mind, we first construct an explicit family {fn}
of polynomials that can be approximated infinitesimally closely by symbolic determinants of size
≤ n, but conjecturally cannot be computed exactly by symbolic determinants of Ω(n1+δ) size, for
a small enough positive constant δ < 1; cf. Section 5. This construction follows a suggestion made
in [36, Section 4.2]. The family {fn} is a Newton degeneration of the family of perfect matching
Pfaffians of graphs. However, this family {fn} turns out to be in VPws. So this idea needs to be
extended much further to construct an explicit family in Newton-VPws that can be conjectured to
be not in VP.

To see how this may be possible, note that the perfect matching Pfaffians are derived from
a semi-invariant of the symmetric quiver with two vertices and one arrow. This suggests that
to upgrade the conjectural Ω(n1+δ) lower bound to obtain a candidate for a super-polynomial
lower bound one could replace perfect matching Pfaffians by appropriate representation-theoretic
invariants (but we do not have to confine ourselves to representation-theoretic invariants; cf. the
remark at the end of Section 1.4). This leads to the second line of investigation, which we now
discuss.

1.4 On Newton degeneration of generic semi-invariants

Our next result suggests that these invariants should be non-generic by showing that, for many
finite quivers, including some wild ones, Newton degeneration of any generic semi-invariant can be
computed by a symbolic determinant of polynomial size.

A quiver Q = (Q0, Q1) [10, 12] is a directed graph (allowing multiple edges) with the set of
vertices Q0 and the set of arrows Q1. A linear representation V of a quiver associates to each vertex
x ∈ Q0 a vector space V x, and to each arrow α ∈ Q1 a linear map V α from V sα to V tα, where
sα denotes the start (tail) of α and tα its target (head). The dimension vector of V is the tuple
of non-negative integers that associates dim(V x) to each vertex x ∈ Q0. Given a dimension vector
β ∈ N|Q0|, let Rep(Q, β) denote the space of all representations of Q with the dimension vector β.
We have the natural action of SL(β) :=

∏
x∈Q0

SL(β(x),F) on Rep(Q, β) by change of basis. Let

SI(Q, β) = Rep(Q, β)SL(β) denote the ring of semi-invariants. The generic semi-invariants in this
ring (see [10]) will be recalled in Section 6.

We will be specifically interested in the following well-known types of quivers, cf. [11]. The
m-Kronecker quiver is the quiver with two vertices and m arrows between the two vertices with
the same direction. It is wild if m ≥ 3. The k-subspace quiver is the quiver with k + 1 vertices
{x1, . . . , xk, y} and k arrows (x1, y), . . . , (xk, y). It is wild if k ≥ 5. The A-D-E Dynkin quivers (see
Section 6.4) are the only quivers of finite representation type—this means they have only finitely
many indecomposable representations.

The following result tells us where not to look for explicit candidate families in VP \VP.

Theorem 2. Let Q be an m-Kronecker quiver, or a k-subspace quiver, or an A-D-E Dynkin quiver.
Then any Newton degeneration of a generic semi-invariant of Q with dimension vector β and degree
d can be computed by a weakly skew circuit (or equivalently a symbolic determinant) of poly(|β|, d)
size, where |β| =

∑
x∈Q0

β(x).

The proof strategy for Theorem 2 is as follows. Define the coefficient complexity coeff(E) of
a set E of integral linear equalities in Rm as the sum of the absolute values of the coefficients of
the equalities. Define the coefficient complexity of a face of a polytope in Rm as the minimum of
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coeff(E), where E ranges over all integral linear equality sets that define the face, in conjunction
with the description of the polytope; cf. Section 6.1.

Theorem 2 is proved by showing that the coefficient complexity of every face of the Newton
polytope of a generic semi-invariant of any quiver as above is polynomial in |β| and d, though the
number of vertices on a face can be exponential.

In view of this result and its proof, to construct an explicit family in Newton-VPws \ VPws,
we should look for appropriate non-generic invariants of representations of finitely generated alge-
bras whose Newton polytopes have faces with super-polynomial coefficient complexity and super-
polynomial number of vertices.13

Finally, we emphasize that we do not have to confine ourselves to Newton-VP in the search of
a specific candidate family in VP \ VP. We may search within VP*, or even outside VP*. Indeed,
it may be easier to identify specific candidate families in VP \VP outside VP* than inside VP*.

1.5 Organization.

The rest of this article is organized as follows. In Section 2 we cover the preliminaries. In Section 3,
we formally define the three degenerations of VP and VNP. In Section 4, we prove Theorem 1.
In Section 5 we construct an explicit family {fn} that can be approximated infinitesimally closely
by symbolic determinants of size ≤ n, but conjecturally cannot be computed exactly by symbolic
determinants of Ω(n1+δ) size, for a small enough positive constant δ < 1. In Section 6, we prove
Theorem 2. In Section 7, we give additional examples of representation-theoretic symbolic deter-
minants whose Newton degenerations have small circuits. All these examples suggest that explicit
families in Newton-VPws \VPws would have to be rather delicate.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. We denote by x = (x1, . . . , xn) a tuple of variables; x may also
denote {x1, . . . , xn}. Let e = (e1, . . . , en) be a tuple of nonnegative integers. We usually use e as the
exponent vector of a monomial in F[x1, . . . , xn]. Thus, xe denotes the monomial with the exponent
vector e. Let |e| :=

∑n
i=1 ei.

For a field F, char(F) denotes the characteristic of F. Throughout this paper, we assume that F
is algebraically closed. Sn denotes the symmetric group consisting of permutations of n objects.

We say that a polynomial g = g(x1, . . . , xn) is a linear projection of f = f(y1, . . . , ym) if g can
be obtained from f by letting yj ’s be some (possibly non-homogeneous) linear combinations of xi’s
with coefficients in the base field F.

A family of polynomials {fn}n∈N is p-bounded if fn is a polynomial in poly(n) variables of
poly(n) degree. The class VP [49] consists of p-bounded polynomial families {fn}n∈N over F such
that fn can be computed by an arithmetic circuit over F of poly(n) size.

Convention: We call a class C of families of polynomials standard if it contains only p-bounded
families, and is closed under linear projections.

By a symbolic determinant of size m over the variables x1, . . . , xn, we mean the determinant of
an m × m matrix, whose each entry is a possibly non-homogeneous linear function of x1, . . . , xn
with coefficients in the base field F. The class VPws is the class of families of polynomials that can
be computed by weakly skew circuits of polynomial size, or equivalently, by symbolic determinants
of polynomial size [33].

13Super-polynomial coefficient complexity and super-polynomial number of vertices do not ensure high circuit
complexity of Newton degeneration. These are necessary conditions that should only be taken as guiding signs.
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The class VNP is the class of p-definable families of polynomials [49], that is, those families (fn)
such that fn has poly(n) variables and poly(n) degree, and there exists a family (gn(x, y)) ∈ VP
such that fn(x) =

∑
e∈{0,1}poly(n) gn(x, e).

The class VP is defined as follows [8,36]. Over F = C, we say that a polynomial family {fn}n∈N
is in VP, if there exists a family of sequences of polynomials {f (i)n }n∈N in VP, i = 1, 2, . . . , such that

for every n, the sequence of polynomials f
(i)
n , i = 1, 2, . . . , goes infinitesimally close to fn, in the

usual complex topology. Here, polynomials are viewed as points in the linear space of polynomials.
There is a more general definition that works over arbitrary algebraically closed fields—including in
positive characteristic—using the Zariski topology. For a direct treatment, see, e.g. [7, App. 20.6].
The operational version of this definition we use is as follows: {fn(x1, . . . , xm)} ∈ VP if there
exist polynomials fn,t(x1, . . . , xm) ∈ VPC((t))—fn,t is a polynomial in the xi whose coefficients are
Laurent series in t—such that fn(x) is the coefficient of the term in fn,t(x) of lowest degree in t.

The classes VPws, VNP, and C, for any standard class C, are defined similarly.
By the determinantal complexity dc(f) of a polynomial f(x1, . . . , xn), we mean the smallest

integer m such that f can be expressed as a symbolic determinant of size m over x1, . . . , xn. By the
approximative determinantal complexity dc(f), we mean the smallest integer m such that f can be
approximated infinitesimally closely by symbolic determinants of size m.

Thus the VPws 6= VNP conjecture in Valiant [49] is equivalent to saying that dc(permn) is
not poly(n), where permn denotes the permanent of an n × n variable matrix. The VNP 6⊆ VPws

conjecture in [36] is equivalent to saying that dc(permn) is not poly(n).
A priori, it is not at all obvious that dc and dc are different complexity measures. The following

two examples should make this clear.

Example 2.1 (Example 9 in [30]). Let f = x31 + x22x3 + x2x
2
4. Then dc(f) ≥ 5, but dc(f) = 3.

Example 2.2 (Proposition 3.5.1 in [31]). Let n be odd. Given an n×n complex matrix M , let Mss

and Ms denote its skew-symmetric and symmetric parts. Since n is odd, det(Mss)=0. Hence, for a
variable t, det(Mss+tMs) = tf(M)+O(t2), for some polynomial function f(M). Clearly, dc(f) = n,
since det(Mss + tMs)/t goes infinitesimally close to f(M) when t goes to 0. But dc(f) > n.

The VPws 6= VPws conjecture in [35] is equivalent to saying that there exists a polynomial
family {fn} such that dc(fn) = poly(n), but dc(fn) is not poly(n). Instead of this conjecture, we
will focus on the VP 6= VP conjecture in [35], since the considerations for the former conjecture are
entirely similar.

A (convex—we will only consider convex ones here) polytope is the convex hull in Rn of a finite set
of points. A face of a polytope P is the intersection of P with linear halfspaceH = {v ∈ Rn|`(v) ≥ c}
for some linear function ` and constant c such that H contains no points of the (topological)
interior of P . Equivalently, a polytope is the intersection of finitely many half-spaces, a half-space
H`,c = {v|`(v) ≥ c} is tight for P if P ⊆ H`,c and P * H`,c′ for any c′ > c, and a face of P is the
intersection of P with a half-space of the form H−`,−c where H`,c is tight for P .

3 Degenerations of VP and VNP

To understand the relationship between VP,VNP, and their closures VP and VNP, we now in-
troduce three degenerations of VP and VNP. The considerations for VPws and VPws are entirely
similar.
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3.1 Stable degeneration

First we define stable degenerations of VP and VNP.
Consider the natural action of G = SL(n,F) on F[x] = F[x1, . . . , xn] that maps f(x) to f(σ−1x)

for any σ ∈ G. Following Mumford et al. [38], call f = f(x) ∈ F[x] stable (with respect to the
G-action) if the G-orbit of f is Zariski-closed. It is known [38] that the closure of the G-orbit of
any g ∈ F[x] contains a unique closed G-orbit. We say that f is a stable degeneration of g if f lies
in the unique closed G-orbit in the G-orbit-closure of g. (If the G-orbit of g is already closed then
this just means that f lies in the G-orbit of g.)

We now define the class Stable-C, the stable degeneration of any standard class C, as follows.
We say that {fn}n∈N is in Stable-C if (1) {fn} ∈ C, or (2) there exists {gn}n∈N in C such that each
fn is a stable degeneration of gn with respect to the action of G = SL(mn,F), where mn = poly(n)
denotes the number of variables in fn and gn.

Proposition 3.1. For any standard class C (cf. Section 2), Stable-C ⊆ C. In particular, Stable-VP ⊆
VP and Stable-VNP ⊆ VNP.

Proof. Suppose {fn(x1, . . . , xmn)} is in Stable-C. This means there exists a family {gn(x1, . . . , xmn)}
in C such that, for each n, fn is in the SL(mn,F)-orbit closure of gn. This means fn can be
approximated infinitesimally closely by polynomials in C, hence {fn} is in C.

Proposition 3.2. Stable-C = C, in particular Stable-VP = VP, and Stable-VNP = VNP.

This is a direct consequence of the definitions.

3.2 Newton degeneration

Next we define Newton degenerations of VP and VNP.
Given a polynomial f ∈ F[x1, . . . , xn], suppose f =

∑
e αex

e. We collect the exponent vectors
of f and form the convex hull of these exponent vectors in Rn. The resulting polytope is called
the Newton polytope of f , denoted NPT(f). Given an arbitrary face Q of NPT(f), the Newton
degeneration of f to Q, denoted f |Q, is the polynomial

∑
e∈Q αex

e.
We now define the class Newton-C, the Newton degeneration of any class C, as follows: {fn}n∈N

is in Newton-C, if there exists {gn}n∈N in C such that each fn is the Newton degeneration of gn to
some face of NPT(gn), or a linear projection of such a Newton degeneration.

Theorem 3. Let C be any standard class (cf. Section 2). Then Newton-C ⊆ C. In particular,
Newton-VP ⊆ VP and Newton-VNP ⊆ VNP.

Proof. Let {fn}n∈N be in Newton-C, and suppose fn ∈ F[x1, . . . , xm(n)]. Then there exists {gn}n∈N ∈
C, such that gn ∈ F[x1, . . . , xm], m = m(n), and fn = gn|Q, where Q is a face of NPT(gn). Suppose
the supporting hyperplane of Q is defined by 〈a,x〉 = b, where a = (a1, . . . , am). If necessary, by
replacing (a, b) with (−a,−b), we make sure that for an arbitrary exponent vector e in gn, 〈a, e〉 ≥ b.
That is, among all exponent vectors, exponent vectors on Q achieve the minimum value b in the
direction a.

Now introduce a new variable t, and replace xi with taixi to obtain a polynomial g′n(x1, . . . , xm, t) =
gn(ta1x1, . . . , t

amxm) ∈ F[x1, . . . , xm, t]. By the definition of fn, g′n = tb ·fn+higher order terms in t.
Therefore, {fn} ∈ C.

Remark. In the above proof, it is important that the Newton degeneration of gn is the coefficient
of tb, the lowest order term in t, and it is not at all clear how one could possibly access higher order
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terms in t using any kind of degeneration. Note that higher order terms can be VNP-complete: Form
a matrix of variables (xi,j)i,j∈[n], and consider the polynomial

∏
j∈[n](t

n+1x1,j + t(n+1)2x2,j + · · ·+
t(n+1)ixi,j + · · · + t(n+1)nxn,j). The coefficient of t(n+1)+(n+1)2+···+(n+1)n is then the permanent of
(xi,j)i,j∈[n]. (Essentially the same construction appeared as [6, Prop. 5.3].) The seeming impossibility

of extracting higher-order terms in t is in line with the expectation that VNP 6⊆ VP.

Noting that if C is closed under linear projections, then so is C, we have:

Corollary 3.3. For any standard class C, Newton-C = C. In particular, Newton-VP = VP and
Newton-VNP = VNP.

3.3 P-definable one-parameter degeneration

Finally, we define p-definable one-parameter degenerations of VP and VNP. We say that a fam-
ily {fn(x1, . . . , xmn)}, mn = poly(n), is a one-parameter degeneration of {gn(y1, . . . , yln)}, ln =
poly(n), of exponential degree, if, for some positive integral function K(n) = O(2poly(n)), there exist
cn(i, j, k) ∈ F, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn, −K(n) ≤ k ≤ K(n), such that fn = limt→0 gn(t), where
gn(t) is obtained from gn by substitutions of the form

yi = ai0 +

mn∑
j=1

aijxj , 1 ≤ i ≤ ln, where aij =

K(n)∑
k=−K(n)

cn(i, j, k)tk, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn.

Note that by [6], VP consists exactly of those one-parameter degenerations of VP of exponential
degree.

We say that the family {fn(x1, . . . , xmn)}, mn = poly(n), is a one-parameter degeneration
of {gn(y1, . . . , yln)}, ln = poly(n), of polynomial degree if K(n) above is O(poly(n)) (instead of
O(2poly(n))).

We say that a family {fn(x1, . . . , xmn)}, mn = poly(n), is a p-definable one-parameter degener-
ation of {gn(y1, . . . , yln)}, ln = poly(n), if, for some K(n) = O(2poly(n)), there exists a poly(n)-size
circuit family {Cn} over F such that fn = limt→0 gn(t), where gn(t) is obtained from gn by substi-
tutions of the form

yi = ai0 +

mn∑
j=1

aijxj , 1 ≤ i ≤ ln, where aij =

K(n)∑
k=−K(n)

Cn(i, j, k)tk, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn.

Here it is assumed that the circuit Cn takes as input dlog2 lne + dlog2mne + dlog2(K(n) + 1)e
many 0-1 variables, which are intended to encode three integers (i, j, k) satisfying 1 ≤ i ≤ l = ln,
0 ≤ j ≤ m = mn, and |k| ≤ K(n), treating 0 and 1 as elements of F.

Thus a p-definable one-parameter degeneration is a one-parameter degeneration of exponential
degree that can be specified by a circuit of polynomial size.

Remark. We can generalize the notion of a one-parameter degeneration slightly by allowing Cn
an additional input b ∈ {0, 1}a(n), a(n) = poly(n), and letting

aij =

K(n)∑
k=−K(n)

 ∑
b∈{0,1}a(n)

Cn(i, j, k, b)

 tk, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn.

The following results hold for this more general notion also.
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For any class C we now define C*, called the p-definable one-parameter degeneration of C, as
follows. We say that {fn} ∈ C* if there exists {gn} ∈ C such that {fn} is a p-definable one-parameter
degeneration of {gn}.

Lemma 3.4. For any standard class C (cf. Section 2), Newton-C ⊆ C*. In particular, Newton-VP ⊆
VP* and Newton-VNP ⊆ VNP*.

This follows from the proof of Theorem 3, noting that we may always take the coefficients of a
face to have size at most 2poly(n). The following are easy consequences of the definitions:

Proposition 3.5. VP* ⊆ VP, and VNP* ⊆ VNP.

Proof. This is immediate from the definitions. For the first statement, note that, for any gn with a
small circuit and any a ∈ F, gn(a), which is obtained from gn(t) (cf. Section 3.3) by setting t = a,
also has a small circuit. The situation for the second statement is similar.

Proposition 3.6. VP
*

= VP, and VNP
*

= VNP.

This is an immediate consequence of the definitions.

4 Stable-VNP = Newton-VNP = VNP* = VNP

We now prove Theorem 1, by a circular sequence of inclusions.

Proof of Theorem 1. Since VNP ⊆ Stable-VNP by definition, Theorem 1 (a) follows from the facts
that Stable-VNP ⊆ Newton-VNP (cf. Theorem 4 below), Newton-VNP ⊆ VNP* (Lemma 3.4), and
VNP* ⊆ VNP (cf. Theorem 6 below).

Theorem 1 (b) follows from the facts that Stable-VP ⊆ Newton-VP (cf. Theorem 4 below),
Newton-VP ⊆ VP* (Lemma 3.4), and VP* ⊆ VNP (cf. Corollary 4.2 below).

Theorem 4. For any class C of families of p-bounded polynomials, Stable-C ⊆ Newton-C. In
particular, Stable-VP ⊆ Newton-VP and Stable-VNP ⊆ Newton-VNP.

Proof. Suppose {fn} ∈ Stable-C. If {fn} ∈ C then there is nothing to show. Otherwise, there
exists {gn}n∈N in C such that each fn is a stable degeneration of gn with respect to the action of
G = SL(mn,F), where mn denotes the number of variables in fn and gn.

It suffices to show that f = fn(x1, . . . , xm), m = mn, is a Newton degeneration of g =
gn(x1, . . . , xm). Let x = (x1, . . . , xm).

By the Hilbert–Mumford–Kempf criterion for stability [26], there exists a one-parameter sub-
group λ(t) ⊆ G such that limt→0 λ(t).g = f . Let T be the canonical maximal torus in G such that
the monomials in xi’s are eigenvectors for the action of T . After a linear change of coordinates
(which is allowed since Newton-C is closed under linear transformations by definition), we can as-
sume that λ(t) is contained in T . Thus λ(t) = diag(tk1 , . . . , tkm) (the diagonal matrix with tkj ’s on
the diagonal), kj ∈ Z, such that

∑
kj = 1.

It follows that f is the Newton degeneration of g to the face of NPT(g) where the linear function∑
j kjxj achieves the minimum value (which has to be zero).

The following result is subsumed by Theorem 6; we include its proof here as a warm-up for
expository clarity.

Theorem 5. Newton-VNP ⊆ VNP.
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Proof. Suppose {fn} ∈ Newton-VNP. If {fn} ∈ VNP, then there is nothing to show. Otherwise,
there exists {gn}n∈N in VNP such that each fn is the Newton degeneration of gn to some face of
NPT(gn), or a linear projection of such a Newton degeneration. Since VNP is closed under linear
projections, we can assume, without loss of generality, that fn is the Newton degeneration of gn to
some face of NPT(gn).

By Valiant [49], we can assume that g = gn(x1, . . . , xm), m = mn = poly(n), is a projection
of perm(X),14 where X is a k × k variable matrix, with k = poly(n). This means g = perm(X ′),
where each entry of X ′ is some variable xi or a constant from the base field F. Since f = fn is a
Newton degeneration of g, it follows that there is some substitution, as in the proof of Theorem 3,
xj → xjt

kj , kj ∈ Z, such that f = limt→0 perm(X ′(t)), where X ′(t) denotes the matrix obtained
from X ′ after this substitution.

It is easy to ensure that |kj | ≤ O(2poly(n)). Then, given any permutation σ ∈ Sk, whether the
corresponding monomial

∏
iX
′
iσ(i) contributes to f can be decided in poly(n) time. It follows that

the coefficient of a monomial can be computed by an algebraic circuit summed over polynomially
many Boolean inputs (convert the implicit poly(n)-time Turing machine into a Boolean circuit, then
convert it into an algebraic circuit (as in [49, Remark 1]) that incorporates the constants appearing
in the projection). Hence {fn} ∈ VNP.

Since VP ⊆ VNP, the preceding result implies:

Corollary 4.1. Newton-VP ⊆ VNP.

The following result can proved similarly to Theorem 5.

Theorem 6. VNP* ⊆ VNP.

Proof. Suppose {fn(x1, . . . , xmn)} ∈ VNP*. Then there exists {gn(y1, . . . , yln)} in VNP such that
each fn is a p-definable one-parameter degeneration of gn.

By Valiant [49], we can assume that g = gn(y1, . . . , yl), l = ln = poly(n), is a projection of
perm(Y ),14 where Y is a k× k variable matrix, with k = poly(n). This means g = perm(Y ′), where
each entry of Y ′ is some variable yi or a constant from the base field F .

Since f = fn(x1, . . . , xm), mn = poly(n), is a p-definable one-parameter degeneration of g,
for some K(n) = O(2poly(n)), there exists a poly(n)-size circuit family {Cn} over F such that
fn = limt→0 gn(t), where gn(t) is obtained from gn by substitutions of the form

yi = ai0 +
m∑
j=1

aijxj , 1 ≤ i ≤ l,

where

aij =

K(n)∑
k=−K(n)

Cn(i, j, k)tk, 1 ≤ i ≤ l, 0 ≤ j ≤ m.

Let Y ′(t) be the matrix obtained from Y ′ after the substitution above. Given any permutation
σ ∈ Sk, and any nonnegative integer sequence µ = (µ0, . . . , µm), the coefficient of the monomial
xµ :=

∏
i x

µi
i in

∏
i Y
′(t)i,σ(i) is a Laurent polynomial in t. Let cσµ denote the coefficient of t0 in this

Laurent polynomial. It can be shown that, for some poly(n)-size circuit Dn over F (depending on
Cn) with sn = poly(n) inputs, we can express cσµ as

14To get the proof to work in characteristic 2 as well, simply use the Hamilton cycle polynomial HC(X) =∑
k-cycles σ∈Sk

∏
i∈[k] xi,σ(i) instead, which is VNP-complete in any characteristic [49].
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cσµ =
∑

b∈{0,1}sn
Dn(b, σ, µ).

Here it is assumed that Dn takes (b, σ, µ), specified in binary, as input, with 0 and 1 regarded
as elements of F. The idea is that σ specifies which of the k! terms of the permanent is chosen, µ
specifies which monomial is chosen, and the Boolean vector b is used to specify which summand of
yi is chosen in the summation. For a given choice of summand of yi, computing the contribution
to the corresponding coefficient is easy using Cn, and then we get to sum over all possible choices
b ∈ {0, 1}sn .

It follows that the coefficient of xµ in fn is∑
σ

cσµ =
∑
σ

∑
b∈{0,1}sn

Dn(b, σ, µ).

Using this fact, in conjunction with Valiant [49], it can be shown that {fn} ∈ VNP.

Since VP ⊆ VNP, the preceding result implies:

Corollary 4.2. VP* ⊆ VNP.

In contrast, using the interpolation technique of Strassen [47] and Bini [4] we have:

Lemma 4.3 (cf. also [6], [8, §9.4], [18, Prop. 3.5.4]). If {fn} is a one-parameter degeneration of
{gn} ∈ VP of polynomial degree, then {fn} ∈ VP.

Theorem 1 leads to:

Question 4.4. (1) Is VP = Stable-VP?
(2) Is VP = Newton-VP?
(3) Is VP = VP*?
(4) Is VP* = VP?

4.1 A complexity-theoretic form of the Hilbert–Mumford–Kempf criterion

As a byproduct of the proof of Theorem 1, we get the following complexity-theoretic form of the
Hilbert–Mumford–Kempf criterion [26] for stability with respect to the action of G = SL(m,F) on
F[x1, . . . , xm]. Given a one-parameter subgroup λ(t) ⊆ G, we can express it as A ·diag(tk1 , . . . , tkm) ·
A−1, for some A ∈ G and kj ∈ Z, 1 ≤ j ≤ m. We call

∑
i |ki| the total degree of λ(t). The following

theorem is implicit in the proofs of Theorems 4 and 5.

Theorem 7. Suppose f = f(x1, . . . , xm) belongs to the unique closed G-orbit in the G-orbit-closure
of g = g(x1, . . . , xm) ∈ F[x1, . . . , xm]. Then there exists a one-parameter subgroup λ(t) ⊆ G such
that (1) limt→0 λ(t) · g = f , and (2) the total degree of λ is O(exp(m, 〈deg(g)〉)), where 〈deg(g)〉
denotes the bit-length of the degree of g.

It follows that if {fn} is a stable degeneration of {gn} ∈ VP, then {fn} is a p-definable one-
parameter degeneration of {gn}.

This result can be generalized from G = SL to reductive algebraic groups using similar ideas, as
follows. Let F = C. Let V = Vλ(R) be a finite dimensional rational representation of a connected,
reductive, algebraic group R with highest weight λ =

∑
i diωi, where ωi’s denote the fundamental

weights of the Lie algebra R of R. Let d =
∑

i di. Let 〈d〉 be its bit-length. Let rank(R) denote the
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rank of R. Given any one-parameter subgroup λ(t) ⊆ R, let λ̂ : C → R denote the corresponding
Lie algebra map. After conjugation, we can assume that λ̂(C) is contained in the Cartan subalgebra
H ⊆ R. Fix the standard basis {hi} of H as in [17], and let λ̂(1) =

∑
i cihi. Define the total size of

λ(t) as
∑

j |cj |.

Theorem 8. Given v ∈ V and w in the unique closed R-orbit in the R-orbit-closure of v, there exists
a one-parameter subgroup λ(t) ⊆ R of total size O(exp(rank(R), 〈d〉)) such that limt→0 λ(t) · v = w.

We formally propose a question that has ramifications on the Stable-VP vs. VP question (cf.
Section 1 and Question 4.4 (1)).

Question 4.5. For some positive constant a, does there exist a stable degeneration {fn} of some
{gn} ∈ VP, with an Ω(2n

a
) or a super-polynomial lower bound on the degree of the canonical

Kempf-one-parameter subgroup [26] λn driving {gn} to {fn}?

5 Newton degeneration of perfect matching Pfaffians

In this section, we construct an explicit family {fn} of polynomials such that fn can be approximated
infinitesimally closely by symbolic determinants of size n, but conjecturally requires size Ω(n1+δ)
to be computed by a symbolic determinant, for a small enough positive constant δ. However, the
family {fn} turns out to be in VPws.

Suppose we have a simple undirected graph G = (V,E) where V = [n]. Let {xe | e ∈ E} be
a set of variables. The Tutte matrix of G is the n × n skew-symmetric matrix TG such that, if
(i, j) = e ∈ E, with i < j, then TG(i, j) = xe and TG(j, i) = −xe; otherwise TG(i, j) = 0. For a
skew-symmetric matrix T , the determinant of T is a perfect square, and the square root of det(T )
is called the Pfaffian of T , denoted pf(T ). We call pf(TG) the perfect matching Pfaffian of the graph
G, and pf(TG) =

∑
P sgn(P )

∏
e∈P xe, where the sum is over all perfect matchings P of G, and

sgn(P ) takes ±1 in a suitable manner. It is well-known that pf(TG) ∈ VPws.
Note that NPT(pf(TG)) is the perfect matching polytope of G, which has the following descrip-

tion by Edmonds. For any S ⊆ V , we use e ∼ S to denote that e lies at the border of S. When
S = {i}, we may write e ∼ i instead of e ∼ {i}.

Theorem 9 (Edmonds, [14]). The perfect matching polytope of a graph G is characterized by the
following constraints:

(a)∀e ∈ E, xe ≥ 0; (b)∀i ∈ V,
∑

e∈E,e∼i
xe = 1; (c) ∀C ⊆ V, |C| > 1 is odd,

∑
e∈E,e∼C

xe ≥ 1. (1)

We shall refer to constraints of type (c) in Equation 1 as “odd-size constraints.”

Theorem 10 (Kaltofen and Koiran, [24, Corollary 1]). Given f, g, h ∈ F[x], suppose h = f/g, and
f and g are in VPws. Then h ∈ VPws.

Theorem 11. For any graph G and any face Q of NPT(pf(TG)), pf(TG)|Q ∈ VPws.

Proof. Thanks to Edmonds’ description, any face of NPT(pf(TG)) is obtained by setting some of
the inequalities in Equation 1 to equalities. As setting xe = 0 amounts to consider some graph G′

with e deleted from G, the bottleneck is to deal with the odd-size constraints.
Suppose the face Q is obtained via setting the odd-size constraints corresponding to C1, . . . ,

Cs to equalities, where Ci ⊆ V . Note that s = poly(n), because the dimension of NPT(pf(TG)) is
polynomially bounded, thus any face can be obtained by setting polynomially many constraints to
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equalities. Let y be a new variable. For any edge e ∈ E, let the number of i ∈ [s] such that e lies
at the border of Ci be ke. Then transform xe to xey

ke . Let the skew-symmetric matrix after the
transformation be T̃G. Since each perfect matching touches the border of every Ci at least once,

ys divides pf(T̃G), so f := pf(T̃G)
ys is a polynomial. Furthermore, the y-free terms in f corresponds

to those perfect matchings that touch each border exactly once. Thus, setting y to zero in f gives
pf(TG)|Q.

f is in VPws, because pf(T̃G) and ys are in VPws, and use Theorem 10.

Construction of an explicit family. Now we turn to the construction of an explicit family {fn}
mentioned in the beginning of this section. We assume that the base field F = C.

First, we give a randomized procedure for constructing fn:

1. Fix a small enough constant a > 0, and let l be the nearest odd integer to na. Fix odd-size
disjoint subsets C1, . . . , Ck ⊆ [n], k = bn1−ac, of size l. For example, we can let C1 = {1, . . . , l},
C2 = {l + 1, . . . , 2l + 1}, etc.

2. Choose a random regular non-bipartite graph Gn on n nodes with degree (say)
√
n.

3. Let Q be the face of NPT(det(TG)) obtained by setting the odd-size constraints corresponding
C1, . . . , Ck to equalities.

4. Let fn = det(TG)|Q.

Note that in the above we use determinant instead of Pfaffian, in order to simplify the discussion
on the determinantal complexity of such polynomials. Then, fn can be approximated infinitesimally
closely by symbolic determinants of size n; cf. the proof of Theorem 3. By Theorem 11, fn can be
expressed as a symbolic determinant of size poly(n). But:

Conjecture 5.1. If a > 0 is small enough, then, with a high probability, fn cannot be expressed
as a symbolic determinant of size ≤ n1+δ, for a small enough positive constant δ.

This says that the blow-up in the determinantal size in the proof of Theorem 11 due to the use
of division (cf. Theorem 10) cannot be gotten rid of completely.

To get an explicit family {fn}, we let Gn be a pseudo-random graph, instead of a random graph.
This can be done in various ways; perhaps the most conservative way is based on the following result.

Lemma 5.2. Fix a constant b > 0. Then, the problem of deciding, given Gn, whether fn can be
expressed as a symbolic determinant of size ≤ nb, belongs to AM.

Proof. This essentially follows from Theorem 11 and the AM-algorithm for Hilbert’s Nullstellensatz
in Koiran [29], with one additional twist.

By Theorem 11. fn has a small weakly skew circuit Cn. Consider a generic symbolic determinant
D(x, y) of size nb whose entries are formal linear combinations of the x-variables, whose coefficients
are new y variables. We want to know whether there is a setting α of the y variables that will make
D(x, α) = Cn(x) (note that both the LHS and RHS here are given by small weakly skew circuits).
The trick on top of Koiran’s result is as follows.

Randomly guess a hitting set for the x variables—that is, a collection of poly(n) many integral
values ξ(i) of large enough poly(n) magnitude that will be substituted into the x variables. By the
fact that this is a hitting set (which it is with a high probability [21]), the following system of
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equations has a solution α for the y’s iff there is a setting of the y’s that makes D(x, α) = Cn(x)
as polynomials in x:

D(ξ(1), y) = Cn(ξ(1))

...

D(ξ(k), y) = Cn(ξ(k))

where k is the size of the hitting set. The AM algorithm is then: randomly guess the ξ’s, then
apply Koiran’s AM algorithm to the preceding set of equations in only the y variables. Note that
Koiran’s result applies to equations given by circuits, and each of the preceding equations is given
by a small weakly-skew circuit.

We can now derandomize the construction of Gn above using this result in conjunction with
the derandomization procedure in [28] (based on Impagliazzo–Wigderson [22]), assuming that E
does not have Boolean circuits, with an access to the SAT oracle, of subexponential size. This
yields, for every n, a sequence G1

n, . . . , G
l
n, l = poly(n), of graphs and the corresponding sequence

f1n, . . . , f
l
n of polynomials such that each f in can be approximated infinitesimally closely by symbolic

determinants of size n, but, assuming Conjecture 5.1 and the hardness hypothesis above, at least
half of the f in’s cannot be expressed as symbolic determinants of size ≤ n1+δ, for a small enough
constant δ > 0. This gives a two-parameter explicit family {f in|1 ≤ i ≤ l = poly(n)} such that each
f in can be approximated infinitesimally closely by symbolic determinants of size n, but, assuming
Conjecture 5.1 and the hardness hypothesis above, the exact determinantal complexity of the family
is Ω(n1+δ), for a small enough constant δ > 0.

A less conservative derandomization procedure is as follows. For each n, let Fn be a Ramanujan
graph as in [32] on n3/2 vertices. Partition the set of vertices of Fn in n groups A1, . . . , An, each of
size n1/2. Let Gn be a graph that contains one vertex labelled i for each Ai, 1 ≤ i ≤ n. Join two
distinct vertices i and j in Gn if there is an edge in Fn from any vertex in Ai to any vertex in Aj .
Let fn be defined as above with this Gn. Then each fn can be approximated infinitesimally closely
by symbolic determinants of size n. But it may be conjectured that fn cannot be computed exactly
by a symbolic determinant of Ω(n1+δ) size, for a small enough positive constant δ.

6 Newton degenerations of generic semi-invariants of quivers

In this section we prove Theorem 2 for the generalized Kronecker quivers, k-subspace quivers, and
the A-D-E Dynkin quivers. We assume familiarity with the basic notions of the representation
theory of quivers; cf. [10, 12].

6.1 Newton degeneration to faces with small coefficient complexity

We begin by observing that the technique used to prove Theorem 11 can be generalized further. In
the proof of Theorem 11, due to Edmonds’ description of the perfect matching polytope, every face
has a “small” description, by a set of linear equalities whose coefficients are polynomially bounded
in magnitude.

For a face Q of a polytope P , we say that a set of linear equalities E characterizes Q with
respect to P , if the description of P together with that of E characterizes Q. For E, let coeff(E)
be the sum of the absolute values of the coefficients of the linear equalities in E. We define the
coefficient complexity of Q as the minimum of coeff(E) over the integral linear equality sets E that
characterize Q with respect to P . Adapting the proof of Theorem 11 we easily get the following:
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Theorem 12. Suppose f ∈ F[x1, . . . , xn] can be computed by a (weakly skew) arithmetic circuit of
size s. Let Q be a face of NPT(f) whose coefficient complexity is poly(n). Then f |Q can be computed
by a (weakly skew) arithmetic circuit of size poly(s, n).

Proof. Let E = {`1, . . . , `m} be the set of inequalities characterizing Q with respect to P , with
coeff(E) polynomially bounded. Note that m = |E| is polynomially bounded as well, since the
Newton polytope of f lives in Rn. Without loss of generality, we assume `i is in the form ai,1x1 +

· · ·+ ai,nxn ≥ ai,0. Introduce a new variable y. For every j ∈ [n], multiply xj with y
∑
i∈[m] ai,j . Let

f ′ ∈ F[x1, . . . , xn] be the polynomial obtained from f after transforming each xi as above. Consider

f ′′ := f ′/y
∑
i∈[m] ai,0 ; note that f ′′ is a polynomial. Setting y = 0 in f ′′ yields f |Q. Since all the

exponents are polynomially bounded, f ′ (and also the polynomial obtained from it by setting some
of the variables to 0) has a (weakly-skew) arithmetic circuit of size poly(s, n), by Strassen [47] (and
Kaltofen and Koiran [24]).

Remark. If Q has poly(n) coefficient complexity, then it can be shown that f |Q is a one-parameter
degeneration of f of poly(n) degree. Hence, Theorem 12 can also be deduced from Lemma 4.3.

6.2 Generic semi-invariants of generalized Kronecker quivers

We now prove Theorem 2 for the m-Kronecker quiver. Recall that the m-Kronecker quiver is the
graph with two vertices s and t, with m arrows pointing from s to t. When m = 2, this is the
classical Kronecker quiver. When m ≥ 3, this quiver is wild.

Any tuple of m n×n matrices is a linear representation of the m-Kronecker quiver of dimension

vector (n, n). Let F[x
(k)
i,j ] denote the ring of polynomials in the variables x

(k)
i,j , where i, j ∈ [n], and

k ∈ [m]. For k ∈ [m], let Xk = (x
(k)
i,j ) denote the variable n×n matrix, whose (i, j)-th entry is x

(k)
i,j .

Let R(n,m) consist of those polynomials in F[x
(k)
i,j ] that are invariant under the action of every

(A,C) ∈ SL(n,F) × SL(n,F), which sends (X1, . . . , Xm) to (AX1C
−1, . . . , AXmC

−1). R(n,m) is
the ring of semi-invariants for the m-Kronecker quiver for dimension vector (n, n) or “matrix semi-
invariants” due to their similarity with the well-known matrix invariants (see Section 7.2.1).

Theorem 13. The Newton degeneration of a generic semi-invariant of the m-Kronecker quiver
with dimension vector (n, n) and degree dn to an arbitrary face can be computed by a weakly skew
arithmetic circuit of size poly(d, n).

Proof. Let M(d,F) be the space of d × d matrices over F. By the first fundamental theorem of
matrix semi-invariants [1, 10, 12, 44], ∀A1, . . . , Am ∈ M(d,F), det(A1 ⊗ X1 + · · · + Am ⊗ Xm) is
a matrix semi-invariant, and every matrix semi-invariant is a linear combination of such semi-
invariants. When Ai’s are generic, the monomials occurring in det(A1⊗X1 + · · ·+Am⊗Xm) have
the following combinatorial description [1]. Define a magic square with the parameter (n,m, d) to

be an n × n matrix S, with (i, j)-th entry S(i, j) = (s
(1)
i,j , . . . , s

(m)
i,j ) ∈ Nm, satisfying: (1) ∀i ∈ [n],∑

j,k s
(k)
i,j = d, and (2) ∀j ∈ [n],

∑
i,k s

(k)
i,j = d. With such a magic square, we associate a monomial

in F[x
(k)
i,j ] by setting the exponent of x

(k)
i,j to s

(k)
i,j . When Ai’s are generic, the monomials occurring

in det(A1⊗X1 + · · ·+Am⊗Xm) are precisely the monomials associated with such magic squares.
Consider the n×n complete bipartite graph G in which, for every (i, j) ∈ [n]× [n], there are m

edges between i and j, colored by the elements of the set [m], with each color used exactly once.
It is easily seen that the magic squares above correspond to the d-matchings in this graph G: for a
graph G = (V,E), a d-matching is a function f : E → N such that ∀v ∈ V ,

∑
e∈E,e∼v f(e) = d.
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Hence, the Newton polytope of a generic matrix semi-invariant is characterized by the following
constraints:

(a)∀i, j ∈ [n], k ∈ [m], s
(k)
i,j ≥ 0; (b)∀i ∈ [n],

∑
j,k

s
(k)
i,j = d; (c)∀j ∈ [n],

∑
i,k

s
(k)
i,j = d. (2)

This description follows easily from the fact that the incidence matrix of a bipartite graph (possibly
with multiple edges) is unimodular (cf. e.g. [45, Chap. 18]). Each face of this polytope is obtained

by setting some of s
(k)
i,j ’s to 0. Hence, its coefficient complexity is polynomial in d and n. Therefore,

by Theorem 12, the theorem follows.

6.3 Generic semi-invariants of k-subspace quivers

Next, we prove Theorem 2 for the k-subspace quivers.
The k-subspace quiver is the quiver with k + 1 vertices {x1, . . . , xk, y}, and k arrows {αi =

(xi, y) | i ∈ [k]}. For k = 1, 2, 3, the k-subspace quiver is of finite type. When k = 4, it is of tame
type. When k ≥ 5, it is wild.

We shall apply the description of semi-invariants of quivers by Domokos and Zubkov [12] to the
case of k-subspace quivers. For this, we need some further notions. Fix a field F. Let Q = (Q0, Q1)
be a quiver, where Q0 is the vertex set, and Q1 is the arrow set. For an arrow α in Q, we use sα
(resp. tα) to denote the start (resp. target) of α. A path π is a sequence of arrows α1α2 . . . α` such
that tαi = sαi+1 for i ∈ [` − 1]. The start (resp. target) of π is sα1 (resp. tα`). A path is cyclic if
sπ = tπ. We assume Q has no cyclic paths of positive length.

Let V be a representation of Q; that is, for x ∈ Q0, V
x is the vector space associated with x, and

for α ∈ Q1, V
α is the linear map from V sα to V tα. This extends naturally to V π = V αk · · ·V α1 :

V sπ → V tπ for a path π.
Fix a dimension vector β for Q, and suppose ` = |Q0|. |β| :=

∑
x∈Q0

β(x). Given β, after fixing
bases for V x, x ∈ Q0, a representation of Q is then specified using n :=

∑
α∈Q1

β(sα) · β(tα)
numbers. Let u1, . . . , un be n variables.

Let GL(β) := GL(β1,F) × · · · × GL(β`,F) be the direct product of general linear groups with
corresponding dimensions acting naturally on the representations of Q with dimension vector β.
Let SI(Q, β) ⊆ F[u1, . . . , un] be the set of semi-invariants with respect to Q and β. Any σ : Q0 → Z
defines a multiplicative character of GL(β), χσ : (B(x) | x ∈ Q0) ∈ GL(β) →

∏
i∈[`] det(B(x))σ(x).

Then define SI(Q, β)σ = {f ∈ SI(Q, β)|∀B ∈ GL(β), B · f = χσ(B)f}. It is clear that SI(Q, β) =
⊕σSI(Q, β)σ. If 〈σ, β〉 :=

∑
x∈Q0

σ(x)β(x) 6= 0 then there are no non-trivial SI(Q, β)σ (see e.g. [10]).
Otherwise, let σ = σ+ − σ−, where σ+(x) = max(σ(x), 0) and σ−(x) = max(−σ(x), 0), and set
s = 〈β, σ+〉.

Now we come to the key construction. Consider the s× s matrix

g = ⊕x∈Q0(V x)σ+(x) → ⊕x∈Q0(V x)σ−(x), (3)

where each block, hom(V x, V y), is of the form w1V
π1 + · · ·+wrV

πr where π1, . . . , πr runs over the
set of paths from x to y, and w1, . . . , wr are variables. For different blocks we use different variables.
That is, the total number of variables is m =

∑
x∈Q0

∑
y∈Q0

σ+(x)p(x, y)σ−(y), where p(x, y) is the
number of paths between x and y. det(g) then is a polynomial in w1, . . . , wm, and u1, . . . , un. wi’s
are called auxiliary variables, since we shall use the following construction: for (c1, . . . , cm) ∈ Fm,
let det(g | wi = ci, i ∈ [m]) be the polynomial in F[u1, . . . , un] after assigning wi with ci in det(g).

Theorem 14 (Domokos and Zubkov [12]). Let notations be as above. SI(Q, β)σ is linearly spanned
by {det(g | wi = ci, i ∈ [m]) | (c1, . . . , cm) ∈ Fm}.
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Proposition 6.1. The Newton degeneration of a generic semi-invariant of the k-subspace quiver of
dimension vector β and degree d to an arbitrary face can be computed by a weakly-skew arithmetic
circuit of size poly(|β|, d).

The proof strategy is to apply Theorem 14 to the k-subspace quiver, which yields a combinatorial
description of the exponent vectors of monomials in a generic semi-invariant of a certain weight.
From the combinatorial description we obtain a description of the Newton polytope and its faces of
a generic semi-invariant. We then conclude by applying Theorem 12 as for generalized Kronecker
quivers.

Proof. In the k-subspace quiver we have k + 1 vertices {x1, . . . , xk, y} and k arrows αi = (xi, y).
Observe that (1) a non-trivial path is of length 1; (2) only y (resp. xi’s) can serve as the target
(resp. start) of a path. Therefore, for det(g) to be nonzero, it is necessary that σ+(y) = 0 and
σ−(xi) = 0 for i ∈ [k]. That is, Equation 3 for k-subspace quiver has to be of the form

g = ⊕i∈[k](V xi)σ+(xi) → (V y)σ−(y),

for det(g) to be nonzero.
g then is a block matrix of the following form: the rows are divided into σ−(y) blocks, with

each block of size β(y). The columns are divided into
∑

i∈[k] σ+(xi) blocks, with σ+(xi) blocks of
size β(xi). Let the number of rectangular blocks be m (m = σ−(y) · (

∑
i σ+(xi))). As for different

blocks we use different variables, so the auxiliary variables are w1, . . . , wm. In a block indexed by
(y, xi), we put in w`V

αi , where V αi is a variable matrix of size β(y) × β(xi). We fix bases for V y

and V xi : let P = {p1, . . . , pβ(y)} be a basis of V y, and for i ∈ [k], let Qi = {qi,1, . . . , qi,β(xi)} be a

basis of V xi . Then the rows of g can be indexed by ∪i∈[σ−(y)]P (i) where P (i) is a copy of P , and the

columns of g are indexed by
⋃
i∈[k] ∪j∈[σ+(xi)]Q

(j)
i where Q

(j)
i is a copy of Qi.

Viewing det(g) as a polynomial in F[w1, . . . , wm][∪i∈[k]V αi ], we are interested in the ∪i∈[k]V αi-
monomials, as in a generic semi-invariant, these are all the monomials. Note that g is a d×d matrix
where d = β(y) · σ−(y), and the ∪i∈[k]V αi-monomials in g are of degree d.

To describe these monomials, we form an undirected bipartite graph G = (L∪R,E) as follows.
Let L = {p1, . . . , pβ(y)}, and R = {qi,ji | i ∈ [k], ji ∈ [β(xi)]}. Connect each (pi, qj,`) with an
edge to form a complete bipartite graph. The number of edges is

∑
i∈[k] β(y) · β(xi), and we can

naturally identify the edges with variables in ∪i∈[k]V αi . Now consider a function f : L ∪ R → N,
with f(pi) = σ−(y), f(qj,`) = σ+(xj). For such a function, we can define the f -perfect matching of
G, that is a function h : E → N, such that for any r ∈ L ∪ R,

∑
e∈E,e∼r h(e) = f(r), where e ∼ r

denotes that e is an edge adjacent to r.
It is not hard to verify that the f -perfect matchings and the exponent vectors in a generic

semi-invariant are in one to one correspondence. One direction is easy: a bijective function b :

∪i∈[σ−(y)]P (i) →
⋃
i∈[k] ∪j∈[σ+(xi)]Q

(j)
i clearly defines an f -perfect matching, as there are σ−(y)

copies of P so each pi ∈ P indexes σ−(y) rows, and similarly for the columns. Furthermore the
f -perfect matching records the exponent vector of the monomial in ∪i∈[k]V αi based on b. On the
other hand, given any f -perfect matching, it is routine to check that we can construct at least one

bijective functions from ∪i∈[σ−(y)]P (i) to
⋃
i∈[k] ∪j∈[σ+(xi)]Q

(j)
i . When there are more than one such

bijective functions, it is easy to check that all of them produce the same monomial.
This suggests that we can use the description of the bipartite f -perfect matching polytope. Let

si,j,` be the variable associated with the edge (pi, qj,`), then we have the following inequalities and
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equalities for the bipartite f -perfect matching polytope:

∀i ∈ [β(y)], j ∈ [k], ` ∈ [β(xj)], si,j,` ≥ 0
∀i ∈ [β(y)],

∑
j,` si,j,` = σ−(y)

∀j ∈ [k], ` ∈ [β(xj)],
∑

i si,j,` = σ+(xj).

(4)

Therefore each face is also obtained by setting some si,j,` to 0, so we can use Theorem 12 to
conclude.

6.4 Generic semi-invariants of Dynkin quivers and beyond

Finally, we prove Theorem 2 for the A-D-E Dynkin quivers.
Here, instead of the Domokos and Zubkov invariants [12], we shall use the invariants of Schofield

[43], which are also known to linearly span the space of semi-invariants [10]. We recall Schofield’s
construction in some detail (without proof), so that we can reason about the Newton polytopes
of the Schofield invariants. Our general strategy is to find (in)equalities satisfied by these Newton
polytopes for arbitrary quivers, and then to show that for the A-D-E Dynkin quivers, these inequal-
ities in fact define the corresponding Newton polytopes. We will then apply Theorem 12, since the
inequalities we find all have small coefficient complexity.

6.4.1 Schofield invariants.

Given two representations V,W of the same quiver, the associated Schofield invariant vanishes if
and only if there is a homomorphism of quiver representations from V to W . The idea is to treat a
map from V to W as variable, and then try to solve the equations which say that those variables
define a homomorphism of representations. These equations are linear and homogeneous, so they
have a solution if and only if a certain determinant vanishes; this determinant will be the Schofield
invariant.

Consider the map dVW that takes (fx : V x →W x) to (f tα◦V α−Wα◦fsα : V sα →W tα). (Here x
denotes a vertex of the quiver, α an arrow, sα its start, and tα its target.) For a given f , dVW (f) = 0
if and only if f is a homomorphism of quiver representations V → W . Thus, s(V,W ) := det(dVW )
vanishes if and only if there exists a non-zero homomorphism V → W . Since the existence of
a homomorphism is basis-independent, we immediately see that the vanishing of s(V,W ) is in
fact GL(V ) × GL(W )-invariant. However, this does not immediately tell us that s(V,W ) itself is
invariant, though it is close; Schofield showed that in fact s(V,W ) is SL(V ) × SL(W )-invariant.
When we fix the dimension vectors of V and W , but we think of both V and W as defined by
variables, we call s(V,W ) a Schofield pair invariant. When we think of V as given by actual values
but W as given by variables, we refer to sV (W ) = s(V,W ) as a Schofield invariant. It is these latter
invariants, as V ranges over all possible dimension vectors and all possible values, that linearly
span the ring of semi-invariants for the dimension vector of W [10].

Let us study the structure of the matrix dVW in a bit more detail. For a vertex x of a quiver Q,
we let V x (resp., W x) denote the vector space associated to x in the representation V ; for an arrow
α we let V α denote the corresponding matrix. We use sα to denote the “start” of the arrow α and
tα to denote the “target” of α. We think of the matrix as acting on column vectors. The matrix
dVW then has row indices (α, i, `), where α is an arrow of Q, i ranges over a basis for W tα and `
ranges over a basis for V sα; it has column indices (x, j, k) where x ranges over vertices, j ranges
over a basis of W x and k ranges over a basis of V x. We refer to the set of rows of the form (α, ∗, ∗)
as the α block-row, and the set of columns of the form (x, ∗, ∗) as the x block-column.

Now we determine the entries of dVW precisely:
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dVW (f)α = f tα ◦ V α −Wα ◦ fsα

dVW (f)(α,i,`) = (f tα ◦ V α)i,` − (Wα ◦ fsα)i,`

=
∑
m

f tαi,mV
α
m,` −

∑
n

Wα
i,nf

sα
n,`

dVW ;(α,i,`),(x,j,k) = δtα,xδi,jV
α
k,` − δsα,xWα

i,jδ`,k

=


δi,jV

α
k,` if tα = x

−δ`,kWα
i,j if sα = x

δi,jV
α
k,` − δ`,kWα

i,j if sα = tα = x

0 otherwise

dVW ;α;x = δtα,xI(Wx) ⊗ (V α)T − δsα,xWα ⊗ I(V x)

Note that each Wα only appears (though multiple times) in a single block-row and block-
column, namely (α, sα), and each V α only appears in a single block-row and block-column, namely
(α, tα). Note that every time V α appears, it appears transposed. From the preceding equation, we
see that the α block-row is the unique set of (dimW tα)(dimV sα) rows that contain all instances
of the variables Wα, V α, and the x block-column is the unique set of (dimW x)(dimV x) columns
containing all instances of the variables Wα for all α such that sα = x, and all instances of the
variables V α for all α such that tα = x.

We now begin deriving some inequalities satisfied by NPT(s(V,W )). Let ωαi,j be the exponent
corresponding to the variable Wα

i,j (α ∈ E(Q), i ∈ [dimW tα], j ∈ [dimW sα]), and ναk,` the exponent

corresponding to the variable V α
k,` (k ∈ [dimV tα], ` ∈ [dimV sα]). We try to be consistent in our

usage of i, j, k, ` throughout.
As with all Newton polytopes, we have:

ωαi,j ≥ 0 ναk,` ≥ 0 ∀α, i, j, k, ` (5)

Blocks. For each α ∈ E(Q), in each monomial there must be exactly as many entries chosen
from the rows in the α block-row as the total number of rows in the block-row:∑

i,j

ωαi,j +
∑
k,`

ναk,` = (dimW tα)(dimV sα) ∀α ∈ E(Q) (6)

Similarly, for each x ∈ V (Q), in each monomial there must be exactly as many entries chosen
from the columns in the x-th block-column as the total number of columns in that block-column:∑

α:sα=x

∑
i,j

ωαi,j +
∑

α:tα=x

∑
k,`

ναk,` = (dimW x)(dimV x) ∀x ∈ V (Q) (7)

Mini-blocks. By the W -mini-block-row corresponding to (α, ∗, `) (` ∈ [dimV sα]), we mean the
unique set of dimW tα rows in which the `-th copy of Wα appears. By the V -mini-block-row corre-
sponding to (α, i, ∗) (i ∈ [dimW tα]), we mean the unique set of dimV sα rows containing the i-th
copy of V α. Note that the W -mini-block-rows and the V -mini-block-rows appear in a collated or
product-like fashion: For each α, the (α, i, ∗) W -mini-block-row intersects each V -mini-block-row
(α, ∗, `) in exactly one row (namely (α, i, `)), and vice versa. Similarly, by the W -mini-block-column
corresponding to (x, ∗, k) (k ∈ [dimV x]), we mean the unique set of dimW x columns in which the
k-th copy of Wα appears for all α such that sα = x. By the V -mini-block-column corresponding to
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(x, j, ∗) (j ∈ [dimW x]) we mean the unique set of dimV x columns in which the j-th copy of of V α

appears, for all α such that tα = x.
Consider the (α, i, ∗) V -mini-block-row, i.e., the set of rows in which the i-th copy of V α appears,

which is the same as the set of rows that contain every occurrence of the variables Wα
i,∗ (and no

other W variables). In each copy of Wα, each monomial can pick at most one variable from the i-th
row, and there are dimV sα copies of Wα on pairwise disjoint sets of rows (W -mini-block-rows), so
each monomial can have degree at most dimV sα in the variables Wα

i,∗:∑
j

ωαi,j ≤ dimV sα ∀α∀i ∈ [dimW tα]. (8)

On the other hand, if too few elements from Wα
i,∗ are picked, then any such monomial will be forced

to pick two elements of the i-th copy of V α from the same column, which is not allowed, so we also
have: ∑

j

ωαi,j ≥ dimV sα − dimV tα ∀α∀i ∈ [dimW tα] (9)

Additionally, in the (α, i, ∗) V -mini-block-row, in total each monomial must select exactly one
variable from each of the dimV sα rows. The natural thing to do here would be to add in the degree
of V α. However, in doing so we may overcount, since the ν’s also include choices of V -variables
that appear in other rows. So we get:∑

j

ωαi,j +
∑
k,`

ναk,` ≥ dimV sα ∀α∀i ∈ [dimW tα]. (10)

Despite the similarity of the preceding two inequalities, we note that they are in fact independent,
as
∑

k,` ν
α
k,` can be larger than dimV tα (e.g., when dimW tα > dimV tα) or smaller than dimV tα

(e.g., when dimensions align so that a term may cover all of the α block rows by Wα variables,
using none of the V α variables).

For the mini-block-columns, we can also get additional information about the mini-blocks by
considering the “complement,” since there is only one Wα that is in the same row as any given V α.
Given a V -mini-block-column (x, j, ∗), we know that exactly dimV x entries must get chosen from
this V -mini-block-column. The entries in this V -mini-block-column are the j-th copies of those V α

such that tα = x, as well as all of the appearances of the columns Wα
∗,j when sα = x. However,

for each α such that V α appears in this V -mini-block-column, the number of V α entries chosen in
this V -mini-block-column is complementary to the number of Wα

j,∗ entries (same α, and the j is
purposefully the row index now) chosen from the copy of Wα in the sα block-column. So we get:

∑
α:sα=x

∑
i

ωαi,j +
∑

α:tα=x

dimV sα −
∑
j′

ωαj,j′

 = dimV x ∀x∀j ∈ [dimW x] (11)
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The V -W symmetric arguments (with appropriate transposes, etc.) then give:∑
k

ναk,` ≤ dimW tα ∀α∀` ∈ [dimV sα] (12)∑
i,j

ωαi,j +
∑
k

ναk,` ≥ dimW tα ∀α∀` ∈ [dimV sα] (13)

dimW sα +
∑
k

ναk,` ≥ dimW tα ∀α∀` ∈ [dimV sα] (14)

∑
α:tα=x

∑
`

ναk,` +
∑

α:sα=x

(
dimW tα −

∑
k′

ναk′,k

)
= dimW x ∀x∀k ∈ [dimV x] (15)

In some cases, these equations are already sufficient, for example for the generalized Kronecker
quivers. These equations may in fact suffice in general (with suitable modifications for degenerate
cases, such as when certain dimensions are 1).

Example 6.2. As an example, let us observe that these equations reduce to the equations (2) for
the generic semi-invariants of the m-Kronecker quiver for dimension vector (n, n). In this case, we
have two vertices, x, y, with m arrows x→ y, say labelled 1, . . . ,m. We have dimW x = dimW y = n.
There are n(dimV x + dimV y) columns. Since every arrow goes from x → y, every block-row has
(dimV x)(dimW y) rows, for a total of mn(dimV x) rows. To get these two quantities to be equal, we
must have dimV x+dimV y = m dimV x, or equivalently, dimV y = (m−1) dimV x. Let d = dimV x,
so dimV y = d(m− 1). We then get a Schofield pair invariant of total degree dmn. However, since
all the Wα appear in the x block-column, which consists of exactly dn columns, the W -degree of
every term of s(V,W ) is exactly dn. This is equivalent to (7) for the vertex x. This d matches with
the d of (2).

Considering equation (11) for the block-column y, we find that there are no α such that sα = x,
so the equation reduces to

∑
α

dimV sα −
∑
j

ωαi,j

 = dimV y (∀i)

Since sα = x for all α, we have dimV sα = dimV x = d for all α. Thus
∑

α dimV sα = md.
Combining this with the above equality, and the fact that dimV y = (m − 1)d, yields the second
equation of (2).

Considering equation (11) for the block-column x, we find that there are no α such that tα = x,
and the equation immediately becomes the third equation of (2).

6.4.2 Dynkin quivers.

The “A–D–E” Dynkin quivers are important because these are the only quivers of finite represen-
tation type: they have only finitely many indecomposable representations. All other quivers have
infinitely many. The Dynkin quiver of type An is defined by having its underlying undirected graph
be a line on n vertices. Dn is a line on n− 2 vertices, with two additional vertices attached to one
end. En for n = 6, 7, 8 (the only ones relevant to the preceding classification) is a path of length
n−1, together with an additional vertex attached to the third vertex on the path. The classification
statement above is independent of the orientation of the edges, but the invariant theory can change
with a change in orientation, so we must take some care.
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Theorem 15. For any of the ADE Dynkin quivers, with arbitrary orientation of arrows, the Newton
degeneration of a generic semi-invariant with dimension vector (n1, . . . , nk) and degree d to an
arbitrary face has determinantal complexity ≤ poly(

∑
ni, d).

The key to the proof is the following lemma about Schofield pair invariants:

Lemma 6.3. For any of the ADE Dynkin quivers with arbitrary orientation, Equations (5)–(15)
define the Newton polytope of any Schofield pair invariant s(V,W ).

Let us first see how the theorem follows from the lemma, then return to prove the lemma:

Proof of Theorem 15 from Lemma 6.3. The Newton polytope of a generic Schofield semi-invariant
sV (W )—that is, for generic V—is the same as the projection of NPT(s(V,W )) into the W sub-
space. Let π be this projection. The π-preimage of a face Q of NPT(sV (W )) is therefore a face
of NPT(s(V,W )), and thus sV (W )|Q = s(V,W )|π−1(Q). By Lemma 6.3, the coefficient complexity

of NPT(s(V,W )) is bounded by a polynomial in {dimV i, ni|i ∈ V (Q)}. If we can bound these
quantities by poly(d, n1, . . . , nk), then Theorem 12 immediately completes the proof.

To bound the size of dVW , we determine the W -degree of s(V,W ) for variable V . This is easily
calculated, using the description of dVW above, as∑

x∈V (Q)

min{(dimV x)(dimW x),
∑

α:sα=x

(dimW tα)(dimV sα)}.

Thus we see that each component of the dimension vector of V is bounded by d (better upper
bounds are possible, but this will suffice), which is small enough for the preceding argument to go
through. Thus we have proved the theorem for generic Schofield invariants. Finally, as the Schofield
invariants sV linearly span the semi-invariants [10], Theorem 15 follows.

And now we proceed to the proof of the key lemma.

Proof of Lemma 6.3. Type An. We proceed by induction on n. Note that the n = 1 case is trivial
(there are no arrows), and the n = 2 case is the degenerate case of the Kronecker quiver with only
a single arrow, which was handled in Section 6.2 and Example 6.2.

Suppose that one of the end vertices, x, is a source (the sink case is analogous, swapping the
roles of V and W and transposing if needed). Call the unique outgoing arrow α : x → y. Then
in the (x, ∗, ∗) block column, only Wα appears. Then (11) gives that

∑
i ω

α
i,j = dimV x for all

j ∈ dimW x. Summing over j then gives
∑

i,j ω
α
i,j = dimV x dimW x. Equation (6) then becomes

dimV x dimW x +
∑

k,` ν
α
k,` = dimW y dimV x, or equivalently∑

k,`

ναk,` = dimV x(dimW y − dimW x).

By the nonnegativity of ναk,` we see that there can be no nontrivial semi-invariants unless dimW y ≥
dimW x; furthermore, if dimW y = dimW x, then the Schofield pair invariants do not involve V α

at all. It is not hard to see that in this case the Schofield pair invariant is just det(Wα)dimV x

times the Schofield pair invariant sx(V,W ) of the quiver one gets by deleting the vertex x. Then
NPT(s(V,W )) = ((dimV x)·NPT(det(Wα)))×NPT(sx(V,W )), where the scalar dot here represents
scaling the polytope (technically this is a Minkowski sum of NPT(det(Wα)) with itself dimV x times,
but since Newton polytopes are, in particular, convex, this is the same as scaling up the polytope).
The product here represents Cartesian product, since the constraints on the Wα are independent
of the constraints on the remaining variables in this case. So the inequalities are the dimV x-scaled
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inequalities for NPT(det(Wα)) (which is just a rescaling of the perfect matching polytope for the
complete bipartite graph), and those for NPT(sx(V,W )), which are (5)–(15), by induction.

Otherwise, dimW y > dimW x. In this case, (15) says that
∑

k ν
α
k,` ≥ dimW y − dimW x. Sum-

ming these over all ` and combining with the equation above, we get that in fact
∑

k ν
α
k,` is equal

to dimW y − dimW x, for each `.
Now, we have two cases: either the other arrow incident on y is oriented towards y or away from

y.
Case 1: β : z → y is oriented towards y (in particular, y is a sink). In this case, the only entries

that appear in the y-block-column are V α and V β. The equations for this block-column and the
corresponding mini-block-columns are then exact, since there is no “mixing of indices” that would
occur had there been both V ’s and W ’s in the same column. This allows us to easily link to the
rest of the dVW matrix and proceed inductively.

Case 2: β : y → z is oriented away from y. In this case, the entries that appear in the y-block-
column are V α and W β. In this case, the equations for the y block column and the corresponding
mini-block-columns give constraints on the total degree of the W β, and (15) links V α (in the y-block
column) to V β in the z-block column by an equality (not inequality), again allowing us to easily
proceed inductively to the rest of the matrix.

Type Dn. The induction is in fact the same, starting from the “long end,” of the quiver. The base
case, however, is now D4. One orientation of the D4 quiver gives the 3-subspace quiver, which was
handled in Section 6.3. So we must handle the other possible orientations. Let u be the “central”
vertex (degree 3), and v1, v2, v3 the outer vertices of degree 1. Because of the S3 symmetries of D4,
there are only four possible orientations up to symmetry, determined precisely by whether there
are 0,1,2, or 3 arrows pointing towards u. When there are 3 we have the 3-subspace quiver, so we
need only handle the other three cases.

We use αi to denote the arrow between vi and u (whichever direction it is facing), for each
i = 1, 2, 3.

Case 0: All of the arrows are pointing away from u. In this case, the u-block-column contains
only V blocks, and each vi block column contains only its corresponding W blocks. As in the An
case, this means that dimW u ≥ dimW vi for all i = 1, 2, 3 is required to get any non-constant
semi-invariants. If dimW vi = dimW u for some i, then V αi doesn’t appear at all in the Schofield
pair invariant, and the Schofield pair invariant is a power of det(Wαi) times the Schofield pair
invariant for the quiver representation gotten by removing the vertex vi. But the remaining quiver
in this case is an A3 quiver, which is covered by the An case above.

So now we assume that dimW u > dimW vi for all i. Any term of s(V,W ) is therefore determined
by: (a) picking exactly dimW vi entries—in distinct rows and columns—from each of the dimV vi

occurrences of Wαi , (b) for each `, picking exactly dimW u − dimW vi entries from among the V αi
∗,`

that are in rows different from those entries picked in (a), and (c) ensuring that for each k, exactly
dimW u entries are chosen from among the V α∗

k,∗ . Our goal is to show that any vertex of the polytope
defined by (5)–(15) satisfies these conditions.

Equation (11) for (v1, j, ∗) turns into
∑

i ω
α1
i,j = dimV v1 , and similarly for v2 and v3. For (u, j, ∗),

(11) becomes
∑

i∈[3](dimV sαi −
∑

j′ ω
αi
j,j′) = dimV u.

Equation (15) for (u, ∗, k) turns into
∑

i∈[3]
∑

` ν
αi
k,` = dimW u, which is precisely condition (c).

For (vi, ∗, k) it becomes dimW u−
∑

k′ ν
αi
k′,k = dimW vi , or equivalently

∑
k ν

αi
k,` = dimW u−dimW vi

for all ` (that is, (14) is already an equality for this quiver).
For this quiver, (13) is either redundant or automatically an equality. By the preceding para-

graph, (13) turns into
∑

i,j ω
α1
i,j ≥ dimW v1 , when in fact we already have that

∑
i,j ω

α1
i,j = dimV v1 dimW v1 .

So if dimW v1 = 1, then (13) is automatically an equality, and if dimW v1 > 1 then it is redundant
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so we need not worry about using it for defining vertices. Similarly for v2, v3.
For this quiver, we also see that (12) is redundant, since (14) is an equality. This leaves only

the nonnegativity constraints (which are easily satisfied by equality by considering monomials not
involving the given variable), and (8)–(10).

Setting (8) to an equality amounts to picking exactly on element from the i-th row of each copy
of Wα, and there are certainly monomials in the Schofield invariant that do this. Once this is done,
(10) and (9) become redundant.

Setting (9) to an equality amounts to only picking elements of Wα from its i-th row in dimV v1−
dimV u of the copies of Wα, rather than from each copy. It is possible to find monomials that do
this for several values i; when it is no longer possible, this is because there simply aren’t enough
rows to accommodate not picking from some of them. But this is ruled out by the relations needed
between the dimensions of the V ’s and W ’s to make dVW square. Once this is done, (8) becomes
redundant, and (10) becomes

∑
k,` ν

α
k,` ≥ dimV v1 .

Setting (10) to an equality can be achieved by considering only the terms in s(V,W ) where V α

is only taken from its i-th occurrences (equivalently, by zero-ing out all except the i-th occurrence
of V α). This can be done as often as we like, so long as there are enough V ’s left in the u-block-
column. But when there are no longer enough left, we will have reached the empty polytope, again
by the necessary relations between the dimensions of V ’s and W ’s.

Thus for any vertex defined by the above equations, there is a monomial in s(V,W ) with that
exponent vector, as desired.

The remaining cases, although they at first seem cosmetically different, turn out to have essen-
tially the same proof. The key fact that enables this is that in each vi block column, at most one
matrix appears, albeit multiple times.

Type En. The induction is essentially the same, except now we must induct starting from each
of the three “long ends,” until we again get down to a D4 quiver as the base case. This was handled
above, so we are done.

This proof easily extends to any quiver that is a tree with at most one vertex of degree > 2. We
expect that it should extend without much difficulty to arbitrary trees, and it may even extend to
completely arbitrary quivers.

7 Additional examples of Newton degenerations in VP

In this section, we give additional examples of representation-theoretic symbolic determinants whose
Newton degenerations can be computed by symbolic determinants of polynomial size. These exam-
ples suggest that explicit families in Newton-VPws \VPws have to be rather delicate.

7.1 Schur polynomials, and the self-replication phenomenon

For an integer `, the elementary symmetric polynomial e`(x) ∈ Z[x1, . . . , xn] is
∑

1≤i1<i2<···<i`≤n xi1 ·
xi2 · · · · · xi` . In particular, for ` > n or ` < 0, e`(x) = 0; for ` = 0, e` = 1.

A partition α = (α1, . . . , αn) is an element in Nn with α1 ≥ α2 ≥ · · · ≥ αn. The conjugate of
α, denoted α′, is a partition in Nm defined by setting α′i = |{j ∈ [n] | αj ≥ i}|, where m ≥ α1. Let
|α| :=

∑
i αi.

The Schur polynomial sα(x) in Z[x] can be defined by the Jacobi–Trudi formula as: sα(x) =
det[eα′i−i+j(x)]i,j∈[n] [17]. As e` can be computed by a depth-3 arithmetic formula of size O(`2) (by
Ben-Or; see [39]), sα can be computed by a weakly-skew circuit of size poly(|α|, n).
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It is well-known that Schur polynomials are symmetric and homogeneous. For a partition β
such that |β| = |α|, the monomial xβ is in sα if and only if α dominates β; that is, for every i ∈ [n],∑i

j=1 αj ≥
∑i

j=1 βj . It follows that the Newton polytope of sα is the permutohedron with respect
to α, denoted PHα. It is defined as follows. For π ∈ Sn, let απ = (απ(1), . . . , απ(n)). Then PHα is
the convex hull of απ’s, where π ranges over all permutations in Sn.

To determine the Newton degeneration of Schur polynomials, we need to understand faces of
this permutohedron. Any face Q of PHα is determined by a sequence of nested subsets ∅ ( S1 (
· · · ( Sk = [n]. For such a sequence, Q is the convex hull of απ’s with π ∈ Sn satisfying: for any
1 ≤ i < j ≤ k, and any p ∈ Si and q ∈ Sj , απ(p) ≤ απ(q). Thus, the face Q is the Minkowski sum of
k permutohedra, and sα|Q is a product of Schur polynomials, which in turn can be computed by a
weakly-skew arithmetic circuit of size poly(|α|, n). This yields:

Proposition 7.1. The Newton degeneration of a Schur polynomial to any face of its Newton
polytope is a product of some Schur polynomials.

Thus the Newton polytope of a Schur polynomial has the self-replication property: any face of
this polytope is a Minkowski sum of smaller polytopes of the same kind. Another polynomial with
such self-replication property is the resultant, cf. Sturmfels [48].

7.2 Monotone circuits

An arithmetic circuit over Q or R is called monotone if it uses only nonnegative field elements as
constants. No cancellation can happen during the computation by a monotone circuit. This fact
can be used to prove the following result.

Theorem 16. If f ∈ R[x1, . . . , xn] can be computed by a monotone arithmetic circuit of size s,
then, for any face Q of NPT(f), f |Q can be computed by a monotone arithmetic circuit of size ≤ s.

Proof. Let C be the a monotone arithmetic circuit of size s computing f . Since C is monotone,
each subcircuit is also monotone and computes a polynomial with nonnegative coefficients.

Let Q be defined by the supporting hyperplane 〈a,x〉 = b. Therefore, a monomial xe in f is
present in f |Q if and only if 〈a, e〉 achieves the minimum b among all monomials in f .

We now transform C to a monotone circuit C ′ computing f ′. The resulting C ′ will be of the
same structure of C, except that some edges may be removed. In particular, the gate sets of C and
C ′ are the same: for a gate v in C, we shall use v′ to denote the correspondent of v in C ′. We also
use fv to denote the polynomial computed at the gate v. The goal is to ensure that, for any gate
v′, in C ′, fv′ consists of those monomials achieving the minimum along a among all monomials in
fv.

This is achieved by induction on the depth. As the base case, we keep all the leaves of C to be
the leaves of C ′.

Now we proceed to the inductive step. By the induction hypothesis, for every gate v′ of depth
≤ d, fv′ consists of those monomials achieving the minimum along a among all monomials in fv.
Let w be a gate at depth d + 1 in C, with two children v and u. Suppose in fv (resp. fu) the
monomials achieve the minimum bv (resp. bu) along a. If w is labeled with + and fw = fv + fu,
then we set fw′ = fv′ if bv < bu, fw′ = fu′ if bv > bu, and fw′ = fv′ + fu′ if bu = bv. If w is labeled
with × and fw = fv × fu, then we set fw′ = fv′ × fu′ . Since no cancellation can happen, it follows
from the induction hypothesis that fw′ consists of those monomials achieving the minimum along
a among all monomials in fw.
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Remark. 1. The resulting circuit C ′ in the proof of Theorem 16 preserves most of the structural
properties of C. In particular, if C is weakly-skew, then C ′ is also weakly-skew.

2. The preceding proof does not work in the presence of cancellations. For example, when w
is labelled with +, we have fw = fv + fu, but fw′ may not be fv′ , fu′ , or fv′ + fu′ due to
cancellations.

7.2.1 Trace monomials

We now apply Theorem 16 to classical matrix invariants.

Let F[x
(k)
i,j ] be the ring of polynomials in the variables x

(k)
i,j , where i, j ∈ [n], and k ∈ [m]. Let

Xk = (x
(k)
i,j ) be an n×n variable matrix whose (i, j)-th entry is x

(k)
i,j . The classical matrix invariants

are those polynomials in F[x
(k)
i,j ] that are invariant under the conjugation action of SL(n,F). Under

this action, A ∈ SL(n,F) sends (X1, . . . , Xm) to (AX1A
−1, . . . , AXmA

−1). The matrix invariants
are semi-invariants of the quiver with a single vertex and m self-loops.

Important examples of matrix invariants are the polynomials of the form Tr(Xi1 · · · · · Xi`),
ij ∈ [m], called the trace monomials. By the first fundamental theorem of matrix invariants [40],
every matrix invariant is a linear combination of trace monomials in characteristic zero.

Suppose F = Q or R. Then any Newton degeneration of a trace monomial can be computed
by a weakly skew arithmetic circuit of size poly(n, `). This follows from Theorem 16, since a trace
monomial can be computed by a monotone weakly skew arithmetic circuit of size poly(n, `).
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