The OSOAD Methodology for Open Complex Agent Systems

Longbing CAO, Chengqi ZHANG, Ruwei DAI

Abstract- Open complex agent system (OCAS) are middle-size or
large-scale open agent organization. To engineer OCAS, agent-
centric organization-oriented analysis, design and implementation,
namely organization-oriented methodology (OOM), has emerged as
highly promising direction. A number of OOM-related approaches
have been proposed; while there are some intrinsic issues hidden in
them. For instance, some fundamental system attributes, such as
system dynamics, are not covered by almost all of existing approaches.
In this paper, we summarize our investigation of existing approaches,
and report a new OOM approach called OSOAD. The OSOAD
approach consists of organizational abstraction (OA), organization-
oriented analysis (OOA), agent service-oriented design (ASOD), and
Java agent service-based implementation. OSOAD provides complete
and deployable mechanisms for all software engineering phases.
Specifically, we notice the transition supports from OA to OOA and
ASOD. This approach has been built and deployed with practical
development of agent service-based financial trading and mining
applications.

Index Terms—Open complex agent system, organization oriented
analysis, agent service oriented design

1. INTRODUCTION

Open complex agent systems (OCAS) [3], for instance,
an online agent-based financial trading systems, are
middle-size or large-scale open agent systems [14]. OCAS
are critical because they are used to deal with those
complex problems that cannot be handled by traditional
technologies or simple agent systems.

In the research on OCAS, engineering OCAS has
become a fundamental task in building OCAS; while it is
also challenging due to the intrinsic system complexities in
an OCAS [3]. As a highly promising direction to engineer
OCAS, a number of agent-oriented software engineering
(AOSE) researchers have referred organizational theory [7]
and artificial social systems [8] to seek original and
effective support. This trend builds the agent-centric
organization-oriented analysis, design and implementation,
namely organization-oriented methodology (OOM) [3].
Some typical OOM-related approaches include Formal
TROPOS [15], GAIA [23], MASE [24], MESSAGE [2],
OMNI [11], ROADMAP [17], SODA [19], etc.

However, there exist many issues in existing OOM-
related methodologies and approaches [10, 3]. For instance,
there are big disagreement among varied approaches in
aspects such as modeling concepts and techniques. More
importantly, some important system attributes, for instance,
system dynamics, are not covered by almost all of existing
approaches.

In more than six years work developing an agent-
based macro-economy decision support system [4, 5], a
financial trading and mining infrastructure F-Trade [6, 13]
for the research and industrial development at Data Mining
Program of Capital Markets Cooperative Research Center

(CMCRC), and projects from Credit Swiss First Boston
(CSFB), we targeted and built a practical organization-
oriented AOSE approach and its model-building blocks [3].
Unfortunately, space limitations preclude a detailed
description of this approach, but here we summarize our
major ideas in building the approach, referred to as
Organization and Service Oriented Analysis and Design
(OSOAD) [3]. It consists of full mechanisms for
organizational abstraction (OA), organization-oriented
analysis (OOA), agent service-oriented design (ASOD),
and Java agent service-based implementation (JASBI).

The main contributions of the OSOAD include the
following aspects. (i) It proposes a systematic abstraction
framework named ORGANISED which explicitly captures
almost all main attributes in an OCAS; while some of the
ORGANISED elements such as system dynamics have not
been covered by other approaches. (ii) The OSOAD, to the
best of our knowledge, is the first work in the world which
integrates organization-oriented modeling and service-
oriented computing. The dialogue between them leads to
bilateral benefits for the abstraction and modeling based on
organization-oriented modeling, and the system design of
large-scale distributed software organization utilizing
service-oriented computing. (iii) Compared with other
OOM-related approaches, our OSOAD embeds complete
and deployable integration methodology and model-
building blocks for all software engineering phases,
supporting smooth transition from OA, OOA to ASOD,
and undertaking practical implementation based on Java
agent service.

The rest of the paper is organized as follows. Section 2
discusses issues in existing OOM-related approaches. The
OSOAD approach is outlined in Section 3. Section 4
presents organization-oriented analysis. In Section 5, agent
service-oriented design is introduced. Section 6 discusses
the transition from OOA to ASOD. Section 7 introduces
agent service implementation strategies and the case study
system. Section 8 presents related work and discussion.
Finally, Section 9 concludes this research.

2. ISSUES INOOM-RELATED APPROACHES FOR
ENGINEERING OCAS

Complexities of OCAS are embodied via
characteristics such as a great many of system constituents,
openness, distribution, interaction, hierarchy, integration,
socialization, uncertainty, and human involvement [3]. For
instance, in an OCAS, goals would be multiform and/or
hierarchical; its environment is often open, networked,
heterogeneous or uncertain; the interactions, agent
activities and behaviors take place temporally, spatially, or

spatial-temporally; the constraints and the rules on social
interactions may present at multiple dimensions; in
addition, the system structure would be rather dynamic and
complicated.

In the investigation of existing OOM-related AOSE
approaches [3], we find out some critical issues from the
OOM perspective. The following lists some of them.

1) Most existing approaches are not developed in terms
of OOM, they are created based on either traditional agent
theory or non-AOSE requirements.

2) The organizational abstraction is not yet complete in
most of them. Some important organizational attributes
such as environment and organizational dynamics haven’t
been covered in most approaches.

3) Every phase of OOM hasn’t been investigated
clearly enough. For instance, some phases are not
supported, architectural and detailed designs are merged.

4) None of existing approaches provides transition
support among the varied phases in OOM. For instance,
the transition from system analysis to design is not studied,
implementation techniques are not touched in most
approaches.

Most approaches develop either graphical or formal
specifications for modeling. Nevertheless, formal
specifications and integrative modeling embedding both
visual and formal specifications are essential for complete
and precise analysis.

3. THE OSOAD METHODOLOGY

With the above issues in mind, we built a new OOM
approach called OSOAD. A key component in the OSOAD
approach is the ORGANISED framework, which abstracts
all main system attributes in an OCAS. This section first
introduces the ORGANISED, and then presents a brief
overview of the OSOAD approach.

3.1 The ORGANISED Framework

Taking the organization-oriented philosophy for
engineering agent organizations, an OCAS is abstracted
and modeled as an artificial organization in terms of
human organizations and organizational theory [6].
Furthermore, the modeling of OCAS can also benefit from
other multiple disciplines such as system sciences and the
science of complexity [20] for deep understanding the
OCAS, for instance the system complexities and dynamics
[3]. As a consequence, the OOM captures all major
intrinsic attributes in an agent organization.

Following the above thinking, and the investigation of
existing OOM-related AOSE approaches [3], we find out
that there are big disagreement among varied approaches in
aspects such as major system attributes, and modeling
concepts and techniques. More importantly, some
important system attributes, for instance, system dynamics,
are not covered by almost all of existing approaches.

Therefore, we propose a new framework, referred to as the
ORGANISED framework, which targets a unified and
relatively complete organization-oriented view of OCAS.

The ORGANISED framework consists of the following
fundamental system attributes: Organization, Rules, Goals,
Actors, Norms, Interactions, Structures, Environment and
system Dynamics (the capitalized letters form the name
ORGANISED). This framework synthesizes some key but
generic concepts such as actor available from existing
approaches, in particular the meanings and ranges of some
members have been expanded. For instance, in our
framework, an actor may take form as an agent, service,
workspace or human. In addition, environment and
dynamics, two essential attributes in OCAS, have been
highlighted in this framework. Table 1 lists the definitions
of these attributes. Figure 1 further shows the metamodel
of the ORGANISED framework.

Table 1. The ORGANISED framework members
Member Description

Name
Organization

An OCAS is an artificial organization, the
organization-oriented abstraction and analysis
explicitly adopt the organizational metaphor
Organizational rules are temporally and/or spatially
distributed over an organization managing its actors,
activities and evolution; this work focuses on two
types of rules i.e. structural and problem-solving
rules because they are fundamental for agent-based
system evolution and problem solving

A goal is certain overall common motivation and
objective of an organization, or individual target of a
sub-organization or an actor; from the perspective of
designing, goal consists of functional and
nonfunctional objectives of an OCAS

Actors may be active or passive stakeholders or
abstract concepts playing different roles at varied
tiers of an organization, including human,
workspace, autonomous, service and resource actors
Norms may be presented as social patterns governing
perceptual, denotative, evaluative, cognitive or
behavioral aspects

Interaction An interaction is a social activity at certain
granularity in an organization in which certain
organizational relationship acts on specific actors
following some organizational rules, for instance,
inter-role (or inter-actor) negotiation, mediation,
teamwork, coalition, resource access, and conflict
resolution, etc.

Organizational structure is an collectively emergent
architecture-oriented pattern from the interaction
among system members at corresponding system
level following certain rules

Environment is a relative object that may comprise
actors, principles, processes and forces [16] inside or
outside an agent system or its subsystem; the features
of environment, i.e. accessibility, determinism,
uncertainty, diversity, controllability, volatility,
continuity, locality, temporality or spatiality
determine whether a system is open, semi-open,
semi-closed or closed [3]

Organizational dynamics is a collective emergence
of all stakeholders interacting in light of the rules
and goals of an organization, which leads to the
overall behavioral patterns, swarm intelligence

Rule

Goal

Actor

Norm

Structure

Environment

Dynamics

emergence and problem solving of the organization;
from system science perspective, an organization
may take the form as a static, a discrete-event
dynamic, or a continuous-time dynamic system
following patterns such as self-organizing, center-
controlled, or stochastic bodies, etc.

Organizational

structure
Organizational
Norm - Interaction 9 |
constrains constrains rule

A

emerges
\ 4

follows follows
implies N Dynamics achieves
g

Fig. 1. The ORGANISED metamodel

3.2 The OSOAD Methodology

The OSOAD approach consists of software engineering
mechanisms for all software engineering phases including
early requirement analysis, OOA for organizational
abstraction and late analysis, ASOD for system
architectural and detailed design, and JASBI for
implementation. We pack all above and call it as
Organization and Service Oriented Analysis and Design
(i.e. OSOAD approach).

e The early analysis discovers integrative
requirements including goal-oriented requirements and
business-oriented requirements. Both of them cover
functional and nonfunctional requirements. These
requirements extracted are used to abstract the domain
problem and problem-solving system. In addition, the
ORGANISED framework is recommended to capture all
main organizational attributes such as goals, rules, actors,
norms, interaction, structure, environment and dynamics in
an OCAS. The output of this phase is an ORGANISED
model.

e The late analysis (i.e. the main task of the OOA)
builds individual models for all elements in the
ORGANISED model.

e The architectural design is achieved through building
(i) agent service abstract model, (ii) agent service design
pattern, (iii) agent service management, (iv) agent service
communication, (v) interaction pattern, (vi) information
integration pattern, (vii) system architectural frameworks,
and (viii) integration level and strategy.

e In the detailed design, models built in the
architectural design are instantiated into (i) agent service
ontology, (ii) agent service specification, (iii) agent service
endpoint interface, (iv) the transport, directory, mediation,

management and communication of agent service, and (v)
data structure model, etc.

e The agent-based problem-solving system is
implemented in Java agent service. The following
components are instantiated: (i) interface agent, (ii)
configure agent, (iii) register agent, (iv) data gateway
agent, (v) ontology service, (vi) directory service, (Vvii)
transport service, (viii) directory service, (ix) discovery
service, etc.

To advice the above lifecycle, according to our
empirical practice in developing the F-Trade, the following
briefly lists hybrid policy and philosophy in capturing the
ORGANISED members, and analysis and design of an
OCAS.

e Reductionism for top-down decomposition — the
reductionism philosophy is taken in the decomposition; it
is recommended from empiricism to capture high-level
attributes such as goals and structures first, and then go
deep to analyze rules, interaction, dynamics and actors
hidden in the system.

e Holism for bottom-up aggregation — it is
recommended to go up from the decomposition to get a
unified or overall view of the organization taking a holistic
policy; this is helpful for understanding subsystem-level
and system-level characteristics by aggregating
components into subsystems, architectural frameworks, or
design patterns.

e Systematology [18] for iterative refinement and
integration — the process for decomposing and aggregating
an OCAS would be iterative, it is recommended to
undertake progressive refinement of the decomposition and
aggregation, and finally form the overall integrated
ORGANISED framework, and analysis and design models
via taking the philosophy of systematology.

In practice, the above software engineering process is
also iterative rather than linear as in a waterfall model.

4. ORGANIZATION-ORIENTED ANALYSIS
4.1. Analysis Process

In the OOA, the following aspects are specified. A
simplified OOA activity list is shown in Table 2.

e Organizational abstraction and decomposition in
terms of the ORGANISED framework;

e Regarding functional requirements, building model-
building blocks for all elements in the ORGANISED
model,;

e For nonfunctional requirements, developing system
supports for flexibility, autonomy, proactive ability and
other qualities the system must hold;

e Presenting the above two types of requirements in
diagrammatic notations and/or formal specifications;

e Analyzing evolutionary activities and process of the
target organization by developing scenario description and
scenario-based analysis;

e In order to capture the state transition of stakeholders,
listing state chain sequence of each stakeholder to grasp
the state transition in the organization.

Table 2. key activities and questions in the OOA

OOA main activities key questions
Gather information Do we have all of the information, e.g.
goal, belief, intention, insight, desire and
environment we need to define what the
system must do?
What functional (stakeholders, goals, rules,

Define system

requirements policies, constraints, etc) and nonfunctional
(global qualities of the system) details do
we need the system to do?

Prioritize What are the most important goals and

requirements interaction activities the system must do?

Prototype for Can the organization-oriented model-

feasibility and building technology proposed deal with

discovery what we think we need to do in the system?

Have we built some prototypes to ensure
that the users fully understand the potential
of what the technology can do?

What’s the best way for organization-

Generate and evaluate

alternatives oriented analysis to develop the agent-
based system?

Review Should we continue and design and

recommendations implement the system we propose?

4.2. Modeling ORGANISED Members

We have built model-building blocks for all
ORGANISED members. They are goal model, actor and
role models, structural and problem-solving organizational
rules, modeling norms, interaction model, modeling
organizational structure, environment model, and
organizational dynamics analysis model. As an instance,
the following briefly exemplifies how to analyze
organizational dynamics.

In [3], we demonstrated some techniques for analyzing
organizational dynamics. Here we take the POMDP 4
model [22] as an example. In the F-Trade, the goal of agent

AlgoPluginAgent is to register an algorithm into the system.

Corresponding environment states and actions of this agent
are listed in Table 3 and 4, respectively. The state-action
chain of this agent interacting with its environment can be
further modeled as Figure 2. In addition, this state-action
chain can be formally specified. For instance, the state
transferring from s; to s, under condition a; is represented
as follows (#; < t,).

e Japr: AlgoPluginRequest (apr.depender = PLUGINPERSON A
apr.dependee = PluginInterface A Fulfilled() —
[0 <> CheckAlgorithmValidity]o < /s AcceptPluginRequest Fufilled()

Table 3. AlgoPluginAgent environment state list

3 none record of the requested algorithm in base B
S4 algorithm ontologies typed by PluginInterface
Ss algorithm ontology base (C) is accessible

S6 configuration table (C) of ontologies exists

7 data source management base (D) is accessible
s accessible local(E) and remote(F) data sources
Sg specific sources configured by PluginInterface
Sio none record in the XML configuration files (G)
Sii open connections to all information bases BCD
S12 register result available to PluginInterface BCD
Si3 connection closed to all information bases

State Description
S registration request by PluginInterface (A) agent
k) accessible algo model(B) and ontology (C) bases

Table 4. AlgoConfigureAgent action list

Action Description

a receive register request from PluginInterface

as register and configure ontologies into base C with help
from OntologyService (H)

Fig.2. POMDP state chain for AlgoConfigureAgent
5. AGENT SERVICE ORIENTED DESIGN

The Agent Service-Oriented Design is composed of
two levels of system design in defining the system design
mechanisms — namely agent service-oriented architectural
design and agent service-oriented detailed design. Notice
that this process is iterative as recommended to follow the
hybrid philosophy.

5.1. Agent Service-Oriented Architectural Design

In agent service-oriented architectural design, a set of
models are built, specifically the following highlighted.

e Agent Service Abstract Model: This defines the types
of agent and service architecture, and properties and
attributes of agent services.

e Agent Service Design Pattern: It abstracts some high-
level agent architectural frameworks, and structural and
functional service patterns.

e Agent Service Integration Strategies: Two strategies
for implementing agent service-oriented computing are
studied; they are “multiagent + Web services” and
“multiagent + service-oriented computing”.

e Agent Service Integration Architectures: General
integration levels and techniques, and system architectural
frameworks are specified for agent service-oriented
architectures.

e Agent Service Management and Communications:
The main issues related to management and
communications of agent services include naming,

directory, communication, transport, mediation, and
discovery of agent services in integrated enterprise
applications.

For instance, in order to integration some legacy
applications, we develop agent services such as proxy,
wrapper and adapter for atomic transactions, gateway for
data access, and mediator and matchmaker for agent
service management. In an agent service-enabled hub and
spoke architecture [3], a centrally located server hosts the
integration logic that controls the orchestration and
brokering of all inter-application communication.
Application 1 is integrated after wrapped as a service;
application 2 interacts with a wrapper server via an agent
adapter; both of them interact with the server through
business services. In addition, application 3 and 4 are
combined with the server via an agent adapter and a
gateway agent respectively.

5.2. Agent Service-Oriented Detailed Design

Agent service-oriented detailed design focuses on
developing the internal structure of each agent and service,
and mechanism for their interaction to achieve its goals. In
this phase, a number of models are developed. We
specifically highlight the following modeling tasks by
tracing the models in architectural design.

e Agent Service Ontology: This aims to build generic
glossary and semantic relationships of ontological items in
agent service-oriented computing for a specific problem
domain.

e Representation of Agent Services: This defines a
specification for presenting agent services.

e Agent Service Endpoint Interfaces: It outlines some
principles for designing generic agent service interfaces.

e Agent Service Organization and Management: The
organization and management of agent services involves
mechanisms for directory, communication, transport,
mediation and discovery of agent services.

e Agent Service-Oriented Design Strategies: Here some
strategic issues in designing agent service-oriented system
are specified.

For instance, in order to design enterprise-wide generic
and consistent interfaces, we undertake the endpoint
interface design. This first establish generic and consistent
enterprise-wide naming conventions and interface design
standards; an integration layer provides standard interfaces
to disparate applications. Then we can encapsulate
business logics using agent services. However, there are
multiple strategies for us to implement this. For instance,
one way is that an agent service provides a generic
operation (service interface) that represents multiple agent
service methods. As illustrated in Figure 3, in which the
operation Implementing Aglorithm (ImplementAlgo) is
performed via methods Implementing Algorithm API
(ImplemtAlgoAPI) and Coding Algorithm Logics
(CodeAlgoLogic).

ImplmtAlgo

Lo ImplmtAlgoAPI
. CodeAlgoLogic

RegisterAlgo

PluginAlgo
- ImplmtRegAPI

- PluginAlgo | UploadAlgo
- SubmitReg

PluginAlgo

PluginAlgo Lo

ConfgAlgoBase
| . GenerateAlgo-
Interface

L. RtrnStatus

> PluginAlgo

Fig. 3. An agent service with multiple operations via combining multiple
agents’ methods

In addition, besides the issues addressed in the above
discussion about architectural and detailed designs,
following aspects will further be investigated in detail in
order to build agent services-oriented design approach: (i)
agent service ontology and representation, (ii) naming and
registry of agent services, (iii) agent service discovery.

6. INTERACTION BETWEEN OOA AND ASOD

After building the system for OOA and ASOD, we
need to consider how to make a smooth transition from
OOA to ASOD. The first is about the dialogue between
agents and services; we will not discuss it for space
limitation, detailed information is available from [3]. The
second is about the interaction between organization and
service. The dialogue between organization and agent
service is based on the following observations and linkage.

e Software engineering theorists appeal to the concept
of human organization to view and understand an agent
system. In this sense, an agent system is an artificial
organization. An artificial organization is an emergent
presentation of interaction among all system members and
its environment.

e However, agent service is a kind of computational
concept that is used to describe computational entities in a
problem-solving system. It embodies the characteristics of
system members; it also encompasses computational
behaviors and problem-solving capabilities in terms of
both intra- and inter-agent services.

Furthermore, the following technical mechanisms
support the interaction and transition between
organization-oriented analysis and agent service-oriented
design.

e The findings of OOA serve as the base of ASOD.
ASOD cares about how to embody and implement those
system elements, behaviors and objectives captured in
OOA.

e All findings in OOA will be further embodied and
instantiated into computational entities and structures
supported and implemented in ASOD. The elements in

OOA could be explicitly or implicitly mapped to elements
in ASOD in some manner.

For instance, the following Table 5 lists the mapping
between some elements in OOA and corresponding items
in ASOD discussed.

Table 5. Mapping between OOA and ASOD
Organization- Agent service-oriented design
oriented analysis
Actors

Agents, services, service
architecture

Agents, services, sources

Structural and semantic relationships in agent
service ontologies, strategies and behavior rules
of agent services

Agent service architecture, system architecture

sources, agent

Environment
Organizational
rules

Organizational
structure
Organizational
dynamics

management and communication of

services

agent

7. IMPLEMENTATION AND EVALUATION

The implementation of an OCAS is recommended to
be in Java agent service. Java agent service can be
undertaken in terms of two kinds of strategies and
techniques.

7.1 Agent Service Integration Strategies

7.1.1. Multiagent + Web services

This approach builds a dialogue between multiagent
system and XML-driven Web service (from hereon
referred to as Web service) [12]. The integration focuses on
building enterprise integration infrastructure and integrated
applications, agent-based dynamic service integration,
agent-based automatic negotiation in Web services,
conversations with Web services, agents for Web service
composition, etc. We call this approach as “Web services-
driven agent systems”. In this method, we advocate the
usage of the second-generation Web services.

The basic work for the Web service-based infrastructure
includes:

e Provide a service description that, at minimum,
consists of a WSDL document;

e Be capable of transporting XML documents using
SOAP over HTTP.

On the other hand, multiagent technology would play
significant roles in aspects beyond the above basic
infrastructure linkage. For instance, the following lists
some main functionality that multiagent can serve.

e Agentized components: applications and application
components in integration enterprise can be agentized on
demand for establishing some specific functional
components. For instance, agents for human-computer
interaction, resource access dispatching, management of
Web services, and enterprise business logic, etc. The
problem here may include how to link and administer these
agents in the Web services-centric environment.

e Management, dispatching, conversation, negotiation,
mediation and discovery of Web services: for these issues,
multiagents can play great roles with flexible, intelligent,
automated and (pro-) active abilities. For instance, a
gateway agent located at a remote data source listens to
requests and extracts data from the source after receiving
data request messages, it generates and dispatches an agent
to deliver the extracted data to the requestor after
completion. This can reduce the network payload and
enhance the flexibility of remote data access.

e Agent-based services: services for middlewaring and
business logics such as adapter, connector, matchmaker,
mediator, broker, gateway and negotiator can be
customized as agents. For instance, an agent-based
coordinator fulfilling partial global planning has the
capability to generate short-term plans to satisfy
themselves, it may further alter local plans in order to
better coordinate its own activities. Agent-based services
can enhance the automated and flexible decision-making of
these services.

WSDL service
interface

I

Order |+ @_»
service

Operation: Submit Plugin

UDDI Search Input message: Algorithm
agent Use: SOAP over HTTP
Find Location: http:/tsap/LoginAlgo

service enerate code

D—D<=) D—D

User SOAP SOAP SOAP Agent
agent: proxy message proxy service:
Submit service: service: Process
Plugin translate translate Order
Order to XML from XML

Fig. 4. Web services-driven agent systems for EAI

Figure 4 describes the architecture of a Web services-
driven agent system. In this system, client defines and
submits algorithm Plugin Order via user agent. User agent
finds Order Service through UDDI and Search agent. A
SOAP proxy service is generated by using WSDL. This
proxy service is taken as a bridge to talk to the Process
Order agent service via SOAP message and a proxy service
translating the message.

7.1.2 Multiagent + service oriented computing

This strategy is based on the combination of
Multiagent and service-oriented computing. Service-
oriented computing is not necessary to be Web service-
driven or -centric. In this approach, multiagents act as the
main building blocks of a system. The system following
this approach is called as “Multiagent-driven service
system”. The fundamental theory of the multiagent-driven
service systems is as follows.

e The system analysis is performed in terms of agent-
oriented early and late requirements analyses, in particular
the fore-detailed organization oriented analysis;

e The system architectural design is undertaken in light
of agent service-oriented design, especially the fore-
mentioned agent service-oriented architecture and
application integration;

e The system detailed design is achieved via agents and
services, and agent service-oriented interactions;

e Agents consist of the main building blocks in the
system; while services play significant roles such as
services of agents, services of services, inter-application
communications and integration, etc.;

By contrast, the content of services here is a little
different from the services in Web services. This can be
embodied in terms of two aspects: (i) the conceptual scope
is broader than that of Web services, for instance, services
could be of agents and services; (ii) agent service is a
unified concept and a computational entity, agents
encompass explicit service attributes and features, services
are agentized through supporting autonomy, flexibility and
proactive capability.

The above discussion actually consists of the main
theory of “Agent Service Oriented Computing” we
advocate and detail in our work [3].

7.2. Case Study and Evaluation

We studied and deployed the OSOAD approach in
developing an online agent-based trading and mining
support system — F-Trade. Some main functions available
for supporting trading and mining in the F-Trade include:
plug-and-play, data gateway, profiles and business-
oriented interaction, online system customization and
reconstruction, optimization of trading strategies, stock-
strategy pairs, supporting comprehensive add-on
applications from capital markets, etc.

The F-Trade is currently running on three superservers,
including the main application server and local database
server located at Faculty of IT, University of Technology,
Sydney at Broadway, and remote stock data warehouse of
AC3 [1] at Australian Technology Park at Redfern Railway
Station. More than 20 trading and mining algorithms have
been plugged into the F-Trade, and tested via connecting to
real stock data at CMCRC, CSFB. It was also
demonstrated to international conferences such as IAT04
[16] and PAKDD [20].

In [3], we have reported the results of functional
evaluation, nonfunctional evaluation, and empirical
evaluation. Our research and experiment in this work have
shown that OSOAD approach is effective and flexible for
engineering an open complex agent-based system, with
capacities of interoperability, adaptability, user-friendliness,
and privacy keeping.

8. RELATED WORK AND DISCUSSION

A number of OOM-related AOSE approaches, for
instance, GAIA, MASE, MESSAGE, OMNI, ROADMAP,
SODA, TROPOS, etc., to some degree implicitly embody
or explicitly embody the OOM. We compared the above
approaches with our OSOAD in two aspects: (i) what
system attributes captured by the ORGANISED framework
are supported, (ii) which software engineering phases are
covered.

Table 6 summarizes the above comparison in terms of
main attributes in an OCAS such as O (organization), G
(goal), A (actor and role), N (norm), I (interaction), R
(rule), E (environment), S (Structure), D (dynamics), and
modeling techniques such as V (visual modeling) and F
(formal modeling). Compared with the above existing
OOM-related approaches, we find that our OSOAD
approach following the ORGANISED framework
demonstrates promising for explicitly analyzing all main
attributes in open agent systems both visually and formally.

Table 6. Comparison of organization-oriented analysis

O|G|A|N]|I R|E |S D|V |F
GAIA AEREAENEAEAENE B
MASE v v v v
MESSAGE | V N N N N
ovNl [V IV IV TV v 7
0s0ab |V [V IV IV IV VIV VIV Y
ROADMA [y [y [y [V [[V v [v]v A
soba [V |V IEERERE!
TROPOS [V [V |V R 7 R

Table 7 further compares the above mentioned
approaches in terms of main software engineering phases:
ERA (early requirement analysis), LRA (late requirements
analysis), AD (architectural design), DD (detailed design),
and I (implementation). We can further find out that all the
above five phases can be supported in OSOAD.

Table 7. Comparison of software engineering phases
ERA LRA AD DD I
GAIA v v v
MaSE v N v
MESSAGE V N N
OMNI N N
OSOAD N N N N N
ROADMAP [V N N N
SODA N V
TROPOS N N N N N

The above comparison shows that the OSOAD is a
systematic approach for engineering OCAS. It can not only
capture and abstract all essential organizational members
in an agent organization, but also supports complete and
detailed analysis, design and implementation of the system.
In addition, the transition from organizational abstraction
to system design and implementation can be undertaken
smoothly.

9. CONCLUSIONS AND FUTURE WORK

The OSOAD approach aims to engineer OCAS. It
donates detailed and deployable mechanisms for
organizational abstraction, organization-oriented analysis,
agent service-oriented design, and Java agent service-based
implementation.

The OSOAD is, to the best of our knowledge, the first
work in the world which integrates organization-oriented
modeling and service-oriented computing. This integration
has shown to be effective in analyzing and designing open
agent systems. The dialogue between OOA and ASOD is
based on the insight that the service-oriented computing is
most suitable for designing large-scale distributed software
organization. The successful interaction between OOA and
ASOD presents a promising solution for effective
representation of system design, and smooth transition
from organization-oriented analysis to design. The
OSOAD embeds explicit, relatively complete and
deployable integration methodology and model-building
blocks to support smooth transition from OA, OOA to
ASOD, and practical implementation based on multiagent-
driven service systems in Java.

On the basis of the current progress of the OSOAD,
there are following key aspects which are under
development towards a systematic organization-oriented
software engineering.

e Improvement and enhancement of organization-
oriented abstraction

e Improvement
oriented analysis

e Development of agent services-oriented design and
implementation

e Seamless bridge from organizational abstraction to
analysis, design and implementation

e Operation and management of agent services

and enhancement of organization-

REFERENCES

[1] AC3: www.ac3.com.au

[2] G. Caire, et al. “Agent-oriented analysis using message/uml”,
Lecture Notes in Computer Science, vol. 2222. Springer Verlag,
New York, pp.119-135, 2002.

[3] L.B. Cao. Organization and service oriented analysis and design —
engineering open complex agent systems. Technical Report,
University of Technology Sydney, Australia, 2004.

—_r—
——
w2

—_r—
—
[=)}

L.B. Cao, R.W. Dai. “Autonomous Intelligent Agents-based
Metasynthetic Engineering: A Macroeconomic Decision-Support
System”, First International Congress on Autonomous Intelligent
Systems(ICAIS2002), ICSC Academic Press, pp60-66, Canada/The
Netherlands, 2002.

L.B. Cao, R.W. Dai. Social Abstraction for Agent-based Open Giant
Intelligent Systems, Proceedings of International Conference on
Intelligent Information Technology (ICIIT-02), pp.47-52, (ISBN 7-
115-75100-5/0267)

L.B. Cao,J.Q. Wang, L. Lin, and C.Q. zhang. Agent Services-Based
Infrastructure for Online Assessment of Trading Strategies.
Proceedings of the 2004 IEEE/WIC/ACM International Conference
on Intelligent Agent Technology, IEEE Computer Society Press,
345-349.

KM. Carley. “Computational and Mathematical Organization

Theory: Perspective and Directions”, Computational and
Mathematical Organization Theory. 1(1): 39-56, 1995.
K.M. Carley: Artificial Social Agents.

http://www.hss.cmu.edu/departments/sds
/faculty/carley/publications.htm, 2001

CMCRC: www.cmcre.com

M. Dastani, et al.: Issues in multiagent system development, In
Proceeding of AAMAS2004, pp.922-929.

V. Dignum, J. Vazquez-Salceda, F. Dignum. A Model of Almost
Everything: Norms, Structure and Ontologies in Agent
Organizations. AAMAS04

T. Erl: Service-Oriented Architecture : A Field Guide to Integrating
XML and Web Services. Pearson Education, 2004

F-Trade: http://datamining.it.uts.edu.au:8080/tsap

4] A. Garcia et al. (eds) Software engineering for large-scale multi-

agent systems. Springer, 2003.

F. Giunchiglia, J. Mylopoulos, A. Perini. The Tropos Software
Development Methodology: Processes, Models and Diagrams.
AOSE02

IATO4: http://www.maebashi-it.org/TAT04/

17] T.Juan, A. Pearce, L. Sterling. ROADMAP: Extending the GATA

Methodology for Complex Open Systems, AAMAS02

JJ. Odell, H.V.D. Parunak, M. Fleischer, S. Brueckner. Modeling
agents and their environment. AOSE2002

A. Omicini. SODA: Societies and Infrastructures in the Analysis
and Design of Agent-based Systems. In AOSE’2000, Limerick
(Ireland), June 10 2000.

] PAKDDO4: http:/www.deakin.edu.au/~pakdd04/

X.S. Qian. Building systemtology, Shanxi Science and Technology
Press, 2004

A. Vasilyev. Synergetic Approach in Adaptive Systems. Master
thesis, Transport and Telecommunication Institute, Riga, Latvia,
2002

F. Zambonelli, N.R. Jennings and M. Wooldridge. “Developing
multiagent systems: the GAIA Methodology”, ACM Trans on
Software Engineering and Methodology, 12(3):317-370, 2003

M. Wood, S.A. Deloach, C. Sparkman. “Multiagent system
engineering”, Int. J. Softw. Eng. Knowl. Eng. 11(3): 231-258, 2001.

