Organization-Oriented Analysis of Open Complex Agent Systems

Longbing CAO, Chengqi ZHANG, Ruwei DAI

Abstract- Organization-oriented analysis acts as the key step and
foundation in building organization-oriented methodology (OOM) to
engineer multi-agent systems especially open complex agent systems
(OCAS). A number of existing approaches target OOM, while they
are incompatible with each other, and none of them is available as a
solid and practical tool for engineering OCAS. This paper
summarizes our investigation in building a unified framework for
abstracting and analyzing OCAS organizations. Our organization-
oriented framework, referred to as ORGANISED, integrating and
expanding existing approaches, explicitly captures the main
attributes in an OCAS. Following this framework, individual model-
building blocks are developed for all ORGANISED members; both
visual and formal specifications are utilized to present an intuitive
and precise analysis. The above techniques have been deployed in
developing an agent service-based trading and mining support
infrastructure.

Index Terms—Open complex agent system, organization oriented
analysis, ORGANISED framework

1. INTRODUCTION

Middle-size and large-scale open agent systems [9],
referred to as open complex agent systems (OCAS) [3],
play increasingly important roles in complex problem
solving, such as online automatic trading. Engineering
such systems is a major yet challenging area in agent-
related research. Agent-centric organization-oriented
analysis, design and implementation, namely organization-
oriented methodology (OOM), has emerged as the highly
promising foundation for agent-oriented software
engineering (AOSE) of OCAS [3]. A number of AOSE
researchers have referred organizational metaphor and
theory [6] to seek original and effective support for
developing organization-oriented AOSE, such as Formal
TROPOS [11], GAIA [21], MASE [22], MESSAGE [2],
OMNI [7], ROADMAP [12], SODA [17], and the like.

The above studies to varied degrees adopt ideas from
human organizations and organizational theory towards
agent-centric OOM. As we have seen, most of existing
work is still preliminary, and incompatible with each other
in concepts and modeling techniques; none of them is
available as a solid and practical tool for engineering
OCAS. On the other hand, some existing work, such as
Formal TROPOS and GAIA, does bring in good concepts
and techniques for handling some aspects of OOM. It is
worthy of studying to analyze the strengths and
weaknesses of them, and integrate and expand them to
build an effective unified mechanism for modeling OCAS-
like agent organizations.

This paper reports our work in investigating, integrating
and expanding existing OOM-related approaches, and
targets a unified and actionable framework for
organization-oriented analysis (OOA) since it is the

groundwork of OOM . However, this does not mean a
simple addition of existing techniques; rather the OOA is
constructed with the following principles in mind:

e Developing a new framework for OOA, which
captures almost all main attributes in an agent OCAS-like
organization;

e Selecting, integrating and expanding good concepts
and techniques from existing knowledge base on demand
to instantiate the proposed framework and its related
members;

e Building new modeling techniques for remaining
members in the framework;

e Presenting the OOA framework in specifications for
concrete and precise analysis.

The OOA framework is called ORGANISED for
explicitly capturing major attributes in an agent
organization. In light of this framework, model-building
blocks for all members are developed. Both visual and
formal specifications are utilized to present these building
blocks in an actionable way. We exemplify this approach
with an online agent-based system F-Trade (Financial
Trading Rules Automated Development and Evaluation)
[4]. It shows that the ORGANISED framework is effective
in analyzing main attributes in an OCAS.

This paper is organized as follows. Section 2 briefly
introduces the case study system — F-Trade that we’ll
exemplify the OOA modeling blocks. The ORGANISED
framework and the OOA process are outlined in Section 3
and 4 respectively. In Section 5, the ORGANISED
members in the OOA are modeled both visually and
formally. Section 6 discusses related work. Finally, Section
7 summarizes and presents our future work.

2. CASE STUDY SYSTEM — F-TRADE

F-Trade? is an agent service-based automated enterprise
infrastructure [4] for the back-testing, simulation,
evaluation and optimization of trading strategies and data
mining algorithms with online connection to huge amount
of stock data.

The main objectives in building the F-Trade are to
provide financial traders and researchers, and data miners
with a flexibly and automatically practical infrastructure.

' For organization-oriented design, we have built a system called agent
service-oriented design (ASOD) [3] by integrating multi-agent and
service-oriented computing.

2 gets funding support from Capital Market CRC Australia for the Data
Mining Program, UTS Research Fellowship Funding and data supports
from AC3. The current version F-TRADE 2.0 is accessible by
http://datamining.it.uts.edu.au: 8080/tsap.

With this infrastructure, they can plug in their algorithms
easily, and concentrate on improving the performance of
their algorithms with real and iterative evaluation on a
large amount of real stock data from international markets.
All other work, including user interface generation, data
preparation, and resulting output, etc., is maintained by F-
Trade. For financial traders, for instance, brokers and
retailers, the F-Trade presents them a real test bed, which
can help them take no risk to iteratively evaluate their
favorite trading strategies before they put money into the
real markets. On the other hand, the F-Trade presents huge
real data in multiple international markets, which is used
for both realistic back-testing and simulation of trading
strategies, and the optimization of trading strategies using
data mining techniques.

The F-Trade looks like an online services provider.
Figure 1 shows its architecture. As a systematic
infrastructure supporting data mining, trading evaluation,
and finance-oriented applications, the F-Trade
encompasses comprehensive functions and services. They
are categorized into the following groups: (i) trading
services, (ii) mining services, (iii) data services, (iv)
algorithm services, and (v) system services.

F-TRADE F-TRADE F-TRADE Vet F-TRADE F-TRADE F-TRADE Data

OCAS, for instance the system complexities and dynamics
[3]. As a consequence, the OOM captures all major
intrinsic attributes in an agent organization.

Following the above thinking, and the investigation of
existing OOM-related AOSE approaches [3], we find out
that there are big disagreement among varied approaches in
aspects such as major system attributes, and modeling
concepts and techniques. More importantly, some
important system attributes, for instance, system dynamics,
are not covered by almost all of existing approaches.
Therefore, we propose a new framework, referred to as the
ORGANISED framework, which targets a unified and
relatively complete organization-oriented view of OCAS.

The ORGANISED framework consists of the following
fundamental system attributes: Organization, Rules, Goals,
Actors, Norms, Interactions, Structures, Environment and
system Dynamics (the capitalized letters form the name
ORGANISED). This framework synthesizes some key but
generic concepts such as actor available from existing
approaches, in particular the meanings and ranges of some
members have been expanded. For instance, in our
framework, an actor may take form as an agent, service,
workspace or human. In addition, environment and
dynamics, two essential attributes in OCAS, have been
highlighted in this framework. Table 1 lists the definitions

User Roles Function Centers Server Services Support Gateway Agen's &System Resources
| | | s cmsss || Of these attributes. Figure 2 further shows the metamodel
T [Fundamentall o o alon Framavork fessunes Taia Miring
e | /1\] S) | of the ORGANISED framework,
w M es Rnowiadas Base Table 1. The ORGANISED framework members
e | || A c::r e | [Agoriom |[agoriom | | poem, Member Description
Stock Dalz Iﬂ;z’;f '”‘,;’3;?.‘,‘" 'g‘;;';ﬁgﬁ Flat Files Name
Services E e n T n n n n n
[Ty ————————— g U:S;SDZT;E:::E Organization | An QCAS 15 an aItlﬁClal. organization, the
[e organization-oriented abstraction and analysis
Fig. 1. The architecture of F-Trade explicitly adopt the organizational metaphor
Rule Organizational rules are temporally and/or spatially
g p y P
. . . distributed over an organization managing its actors,
The F-Trade is very flexible. More than 20 practical activities and evolution; this work focuses on two
trading strategies have been developed and plugged into types of rules i.e. structural and problem-solving
the F-Trade via the soft plug-and-play [5]. Both research rules because they are fundamental for agent-based
.. . .. system evolution and problem solving
and .app lications .SUCh as new .tradmg and mming Goal A goal is certain overall common motivation and
algorithms on capital markets, multiple data sources, and objective of an organization, or individual target of a
system modules for technical analysis, fundamental sub-organization or an actor; from the perspective of
analysis, investment decision support and risk management gzilﬁl’z;giénalggg}ectg’e"ssf;zn C‘)’(f:ASf““C“O“al and
can be easily embedded into the F-Trade. The system has Actor Actors may be active or passive stakeholders or
. . y p
been running online for two years very robustly. abstract concepts playing different roles at varied
tiers of an organization, including human,
3. The ORGANISED FRAMEWORK workspace, autonomous, service and resource actors
Norm Norms may be presented as social patterns governing
. . . . perceptual, denotative, evaluative, cognitive or
This section briefly introduces the ORGANISED behavioral aspects
framework and the process undertaking organization- Interaction An interaction is a social activity at certain
oriented analysis of an OCAS-like organization. granularity in an organization in which certain
Taking the organization-oriented philosophy for organizational relationship acts on specific actors
. . .. R following some organizational rules, for instance,
engineering agent organizations, an OCAS is abstracted inter-role (or inter-actor) negotiation, mediation,
and modeled as an artificial organization in terms of teamwork, coalition, resource access, and conflict
human organizations and organizational theory [6]. resolution, ete. i i
Furthermore, the modeling of OCAS can also benefit from Structure Orga}mzatlonal. structure is an collectlvel){ emerg;m
. iscipli h . d th architecture-oriented pattern from the interaction
other multiple d1sc1p. ines such as system sciences and the among system members at corresponding system
science of complexity [20] for deep understanding the level following certain rules

Environment | Environment is a relative object that may comprise
actors, principles, processes and forces [16] inside or
outside an agent system or its subsystem; the features
of environment, i.e. accessibility, determinism,
uncertainty, diversity, controllability, volatility,
continuity, locality, temporality or spatiality
determine whether a system is open, semi-open,
semi-closed or closed [3]

Organizational dynamics is a collective emergence
of all stakeholders interacting in light of the rules
and goals of an organization, which leads to the
overall behavioral patterns, swarm intelligence
emergence and problem solving of the organization,
from system science perspective, an organization
may take the form as a static, a discrete-event
dynamic, or a continuous-time dynamic system
following patterns such as self-organizing, center-
controlled, or stochastic bodies, etc.

Dynamics

Organizational

Environment
structure
Organizational
Norm - Interaction g |
constrains constrains rule

A

emerges
A4

follows follows
implies > Dynamics achieves
|

Fig. 2. The ORGANISED metamodel

4. ORGANIZATION-ORIENTED ANALYSIS PROCESS

The aim of the ORGANISED is to provide an easily
understandable and actionable framework for analyzing
complex agent organizations. In [3], we have presented a
detailed description for implementing the process of OOA
following the ORGANISED framework. A simplified
OOA activity list is shown in Table 2.

Table 2. key activities and questions in the OOA

OO0A main | key questions

activities

Gather Do we have all of the information, e.g. goal,

information belief, intention, insight, desire and environment
we need to define what the system must do?

Define system | What functional (stakeholders, goals, rules,

requirements policies, constraints, etc) and nonfunctional
(global qualities of the system) details do we
need the system to do?

Prioritize What are the most important goals and

requirements interaction activities the system must do?

Prototype for
feasibility ~ and

Can the organization-oriented model-building
technology proposed deal with what we think

discovery we need to do in the system? Have we built
some prototypes to ensure that the users fully
understand the potential of what the technology
can do?

Generate and | What’s the best way for organization-oriented

evaluate analysis to develop the agent-based system?

alternatives

Review Should we continue and design and implement
recommendations | the system we propose?

with

management

In addition, according to our empirical practice in the
F-Trade, the following lists hybrid philosophies [3] for
capturing the ORGANISED members in an OCAS.

e Reductionism for top-down decomposition — in
decomposition, the reductionism philosophy is taken; it is
recommended from empiricism to capture high-level
attributes such as goals and structures first, then go deep to
analyze rules, interaction, dynamics and actors hidden in
the system.

e Holism for bottom-up aggregation — it is
recommended to go up from the decomposition to get a
unified or overall view of the organization taking a holistic
policy; this is helpful for understanding subsystem-level
and system-level characteristics by aggregating
components into subsystems or the system.

e Systematology [18] for iterative refinement and
integration — the process for decomposing and aggregating
an OCAS would be iterative, it is recommended to
undertake progressive refinement of the decomposition and
aggregation, and finally form the overall integrated
ORGANISED framework via taking the philosophy of
systematology.

In the following section, we briefly introduce the
modeling of the ORGANISED members through
illustrating some objects in the F-Trade. At this stage,
norm is merged into organizational rule and will be
investigated as future work. In addition, the actor is
introduced first because it is the most basic attribute of an
agent organization and widely used in modeling other
members.

5. MODELING the ORGANISED MEMBERS

In the OOA, rules, goals, actors, interaction, structure
and environment are instantiated into organizational rule
model, goal model, actor model, interaction model,
organizational structure model, and environment model,
respectively. System dynamics is discussed individually. In
the modeling, good techniques from TROPOS and GAIA
are synthesized. Besides diagrammatic notations for these
models, formal specifications based on temporal logic [15]
are also presented to complement visual modeling. Formal
specifications are based on the following operators:

o/e - next/previous state
O/ - sometime in the future/past
D/I - always in the future/past
O <4 (some time in the future within deadline d)
O<a (always in the future up to deadline d)
x - x occurs 0 or more times
x" - x occurs 1 or more times

x.y - x is followed by y

x|y - x or y occurs

X3y -y is covered by x

[x], - x happens if y occurs

5.1. Actor Model

The following types of actors may be identified and
presented visually in an agent organization.
e Human Actor (X): human beings related to the
system, e.g. algorithm providers

e Workspace Actor ((O): it universally refers to the
proposed system or problem space, for instance the F-
Trade

e Autonomous Actor ((D): they are usually agents that
fulfill some responsibilities with decision controlled
by themselves, e.g. algorithm plug in agent

e Service Actor ((D): it performs some activities or
functions associated with certain autonomous actors or
on its own, e.g. stock data service

e Resource ([J): varying databases, knowledge bases,
configuration files, etc
Every actor has some associated attributes, creation and

inner properties (property is labeled as (®). Agent and
Service actors may hold mental states such as belief, desire
and intention (state as (®). Some actors take on roles (role

as (®)); one actor may take on one or many roles. The
following excerpt example formally illustrates an actor
named AlgoPluginAgent that holds the Role
PLUGINPERSON to register an algorithm into the F-Trade
(the role model follows the GAIA role schema).

Role PLUGINPERSON
InformalDef This role involves applying for registering a
nonexistent algorithm, typing in attribute items of the
algorithm, and submitting plug in request to F-Trade.
FormalDef
Agent AlgoPluginAgent
Attribute constant algoid: AlgorithmID
Existed: Boolean
Attribute constant ai: Attributeltems
Attribute constant apa: AlgoPlugin Agent
Protocol CheckAlgorithmValidity
Protocol SubmitAlgoPluginRequest
Permissions
A ia: Interface Agent(apa.Call(ia) -
CallPluginInterfaces()) — ¢ . ,; apa.Read(algoid)
— 0 . ; apa.Fill(ai)
Responsibilities
Liveness:
3 ApplyRegistration.Fulfilled() —»
¢ <, CheckAlgorithmValidity.Fulfilled() —
¢ > FillinAlgoRegisterOntologies.Filled() — ¢
<13 SubmitAlgoPluginRequest.Fulfilled()
Safety (Invariant):
0<t;,<t,<t3

5.2. Modeling Organizational Rules

There are two types of fundamental organizational
rules. Structural rules identify the organizational relations
among actors and roles; while problem-solving rules
specify how an organization solves its problems.

5.2.1. Structural rules

The following list defines four main structural rules in
agent organizations and their notations in our modeling.
The symbols A and B represent actors, roles or goals.

e Control (A7):B is controlled by A, or B can be
achieved by means of A

e Peer (#»8):A and B share a peer-to-peer relation

e Ownership (#>2): A owns B

e Dependency (A*8): A depends on B

Some of the above relationships normally co-exist in

some combinatory manner in a complex system. For
instance, the following shows four types of combinations
of Dependency relationships in TROPOS. In Figure 3
relationship combination is also demonstrated.

e Single Dependency (48): A solely depends on B

o Bidirectional Dependencies (*=*=): A depends on B
for some situation, for other situation B depends on A

e And/Or Composition (B}D): A, B and C depend on D
for one and/or multiple dependencies respectively, and;

e And/Or Decomposition (Cz—}_"): A depends on B, C
and D for one and/or multiple dependencies respectively
Relationships can also be presented formally. For instance,
the following grammar specifies the relationship
Dependency.

/* Relationship grammar*/

<relationships> ::== <type> <relationship>

<relationship_type> := (Dependency | Control | Peer |
Ownership | ...)

<dependency> := <type> Dependency <name> <mode>
Depender <name> Dependee <name> [attributes]

[creation-properties] [invar-properties] [fulfill-
properties|

<dependency type> = (Goal | Subgoal | Resource | [self-
defined])

<dependency mode> := Mode (achieve | cease | maintain |
avoid | optimize | ...)

<resource_type> = (Data | Information | Knowledge | [self-
defined])

5.2.2. Problem-solving rules

Some main problem-solving rules consist of rules for
Means-Ends [13], Contribution [13], Goal Decomposition,
Iteration and Cardinality. In the following section, we
discuss the latter three types of rules.

Goal decomposition (__.) [13] defines the refinement
of a goal either temporally or spatially. In the process of
decomposition, a goal is divided into multiple sub-goals.

There are four types of combinations among sub-goals:
Sequence, Alternative, Concurrency, and Hybrid.

e Sequence(A): sub-goals are performed from left to
right sequentially to complete the super goal

e Alternative(A): a goal can be fulfilled by sub-goal
either A or B
e Concurrency(4): a goal can only be fulfilled by all
decomposed sub-goals in parallel
e Hybrid(»): a goal is fulfilled by performing
multiple sub-goals in an order combining some of the
above three relationships
Furthermore, a sub-goal may need to be executed
iteratively. Iterative links describe under what condition a
sub-goal will be performed and whether it should be done
once or repeatedly. There are five types of iterations: the
While-Loop, the For-Loop, the Interrupt, the If, and the
Pick.
They can be notated by a generic formula as:

[Notation] Predicate (ParameterList).

e While-Loop (65): *while(condition), reiterate the
subgoal while the “condition” is satisfied

e For-Loop (&X)): *for(variable, listOfValues), list of
values for the variables in the subgoals will be held
iteratively

e Interrupt (&): *whenever(variableList, condition),
values for the variables in the subgoals will be held
whenever the condition is satisfied

o Ifl £): lificondition), the sub-goal will be
operationalized if the condition is satisfied

. Pick(@): \pick(variableList, condition), values for the
variables in the sub-goals will be picked non-
deterministically satisfying the condition

Moreover, for fulfilling a goal o, one to many goals 3
may need to be dependent. This refers to Cardinality
constraints in an organization. There are four types of
cardinalities such as Mandatory One (o0 — f3), Mandatory
Many (a0 > f3), Optional One (o0 -5 f3), and Optional
Many (o = f3).
Figure 3 shows the model of the execution and

evaluation of an algorithm in the F-Trade by combining
some of the above rules.

Resource info
base

Local

Evaluate Algo
Knowledge

Optimize Algo
Remote Stocl
Data

Fig. 3. Combination of organization rules modeling algorithm execution
and evaluation

5.3. Modeling Organizational Goals

Functional () and nonfunctional (C2) goals [13]
can be visualized through goal decomposition in an
organizational goal and structure diagram. In addition, in
Section 5.5, we’ll introduce another method for building
goal diagram based on GAIRE model [3]. Formally, a goal
can be represented by a formal grammar. For instance, the
goal RegisterAlgo is expressed as follows.

Goal RegisterAlgo
InformalDef When an algorithm component is been coded and
the algorithm isn’t available from the F-Trade, this
algorithm can be registered by calling plug-in interfaces,
filling in algorithm registration ontologies, and upload the
algorithm configuration base.
FormalDef
Role AlgoProvider
Agent AlgoPluginAgent
Agent ConfigureAgent
Agent InterfaceAgent
Service OntologyService
Mode achieve
Attribute constant ca: CodeAlgo
Attribute constant aro: AlgoRegisterOntology
Attribute constant algo: Algorithm
registered: boolean
Creation condition
e Fulfilled(ca) A — Existed(algo)
Invariant ca.actor = actor
Fulfillment condition
V ac: AlgorithmComponent (ac.algo = algo —
O 4 3 cpi: CallPluginInterfaces (cpi.actor = actor A
Fulfilled(cpi) A pi.Called) A
O.o(3faro: FillinAlgoRegisterOntologies
(faro.depender = actor A Fulfilled(faro) A
aro.Filled) A 3 uac: UploadAlgoComponent
(uac.depender = actor A Fulfilled(uac) -
ac.uploaded)))

5.4. Interaction Model

Interaction is usually modeled in terms of diagrams
such as activity, sequence and state chart in modeling
languages like UML and AUML. More specifically,
interaction protocol can link most of the interaction
ontologies. Figure 4 shows the interaction protocol
ontologies we taken in [3]. Interaction protocol ontologies
can be further filled into protocol diagram [21] and pattern
template [3] on demand.

Protocol and pattern can also be formally represented.
The following presents the grammar for a protocol.

/*grammar for protocol*/

<protocol> := Protocol <name> [function] [Message]
<initiator> <responder>" <input> <rule> <output>
[termination] [exception]

<exception> = Exception <type>

<type> = [message] [timeout] [protocol]

/*grammar for pattern*®/

<pattern> ::= Pattern <name> [alias] <f0rce>’k [problem]
<structure> [layer] <participant>" <solution>
<dependency>" <role>" [message] [context] [known use]
[example] [see also]

enter

Input e f Interaction Interaction ; i
0.1 t te| Exception
createl protocol 4 Process o2 P
has 0.1
has
has l1“* ’—I TZF ZT
Termination Protocol Message Timeout
Output Constraints Exception | | Exception | |Exception
send 1% T 1
J| Participant ‘
- cause|
Initiator | 4 « 1. M e .| Timeout
— send has g 4
1.*

Fig. 4. Interaction protocol ontology

For instance, the protocol SubmitAlgoPluginRequest
mentioned in role PLUGINPERSON is expressed as
follows.

Protocol SubmitAlgoPluginRequest
Requester: AlgorithmRegisterAgent
Responder: ConfigureAgent
Input: reqid, algoid

Rule:
v apa: AlgoPluginAgent(apa.
FillinAlgoRegisterOntologies.Fulfilled(algoid) A
Fulfilled(algoid)) >

¢ <y Fulfilled(reqid)
Output: reqid.Successful()

In addition, messages transferred in an interaction can
also be formalized. The following shows the ACL [8]
abstract message formula grammar.

/* ACL Message Abstract Formula Grammar™*/

<formulae> = (<communicative act>.<message
parameter>)*

<communicative act> = (accept-proposal | agree | cancel |
cfp | confirm | disconfirm | failure | inform | inform-if |
inform-ref | inform-ref | not-understood | propose |
query-if | query-ref | refuse | reject-proposal | request |
request-when | request-whenever | subscribe | envelop)

<message parameter> ::= ([sender] anonymous + <receiver>"
+ [repl)"tor + ([language] <content> > <language> +
[OHZOIOgy]) . [content] <conversation-id> | in-reply-to + [eHCOding]
envelop + [pr OZOCOI] <conversation-id> | o reply-by +
<comversation-id> + [reply-with] + [in-reply-to] +
[reply-by])

5.5. Modeling Organizational Structure

The basic task for modeling an organizational structure
is to build an organizational structure diagram using the
modeling components in the previous sections on demand.
Since open agent systems are very complicated, it would

be difficult to build up and pack all components into one
monolithic organizational structure diagram. An alternative
method (if suitable) is to develop high-level organizational
framework and low-level subsystem organizational
structure diagrams, respectively. If the system is
complicated enough, multiple hierarchical subsystems need
to be decomposed and analyzed. Finally, the low-level
diagram for any target subsystem can be built up, which
looks like Figure 3 but with more details. We do not
exemplify such system diagrams here.

In the process of decomposing and modeling a
subsystem, we also build a GAIRE model [3]. It captures
all detailed item-sets of Goals, Actors, Interactions, Rules
and Environment (GAIRE for short). For instance, the
GAIRE model for the subsystem S; on layer a is shown as
follows.

Goi= 181> iz ---» Gij}

Agi = aip, @iz, ..., agy
L= {Gins T2y oo Bt}
Rai = i1, Tizs oo Vim)

E = e, e, ..., €in}

After we obtain all GAIRE models for every layer, we
can build the global organizational framework through two
steps. (i) Building GAIRE global structure diagram.
Assuming every subsystem consists of one aggregated goal
G, actor A;, interaction / ;, rule R; and environment £, all
item-sets of G, 4, I, R and E form one GAIRE system. We
build a global organizational structure GAIRE diagram by
linking all GAIRE item-sets. The global GAIRE diagram,
which also looks like the subsystem diagram, assists us
with the global framework of an agent organization. (ii)
Building global Goal and Interaction diagrams. We further
build a global organizational goal diagram G capturing
relationships among goal sets: {G,, G, ..., G, ..., G,}, and
a global interaction model / capturing interaction among
actors, goals and environment in subsystem sets: {S;,
S5, ..., S,}. The diagrams G and / can be developed based
on either GAIRE system using aggregated item-sets or
detailed item-sets on demand. These two diagrams help us
to obtain the overall framework of organizational goal and
interaction dynamics. Figure 5 shows a sample of Goal
diagram, which consists of high-level goals and their sub-
goals for algorithm plug-in, configuration and execution.

Ontologies
ubmit Plugin
Interfaces

.Algo Plugin

Access algo
\ base
Algo Confiure v >
- Algo Execute)JF—FN
Create Output
and Reports

Access
Resource base

Access
Knowledge

Access Remote
Stock Data

Check Algo
Validity

Configure
Algo Base

Fig. 5. Goal diagram

5.6. Environment Model

Modeling the environment involves specifying all
actors, resources, principles, processes, forces, interactions
and the system (or subsystem) boundary. The environment
comprises what the organization can exploit, control or
consume when it moves towards the achievement of its
goals. These are embodied in the environment and
structure model.

More specifically, modeling the environment must also
cover agent-environment interaction (AEI). By introducing
environment observations, an AEI can be further modeled
as a Partially Observable Markov Decision Processes
(POMDP) [19], called POMDP ;. The POMDP »g; model
is a six-element tuple:

POMDPAE] = <S,A, T, R, 0, D>,

where O(s,, r,) is the finite set of observations related to
state s, and reward r; D(a,, s;+1, di+1) is the probability of
making observation d,.; from state s,.; after having taken
action a, Figure 6 shows the POMDP,g model. In
addition, we can also obtain an interaction dynamic
diagram as discussed in Section 4.5 based on GAIRE
model. Moreover, environment can be formally modeled
with the following grammar.

<environment> = Environment <gype> <actor>"
[resources] [principles] [processes] [forces] [attributes]
[invar-properties]
reward

Environment

Fig. 6. Agent environment interaction
5.7. Organizational Dynamics Analysis

In literature, the modeling of organizational dynamics
is primarily based on methods from the following fields:
Markov Decision Process, the Sciences of Complexity
[20], Dynamic System Theory [1], logic-based and reactive
approaches, and statistical approaches. Additionally,
scenarios, sequences, states and activities are often used
when presenting system dynamics visually.

In [3], we demonstrated some techniques in analyzing
organizational dynamics. Here we take the POMDP sg;
model as an instance. In F-Trade, the goal of agent
AlgoPlugindAgent is to fulfill the registration of an
algorithm into the system. Corresponding environment
states and actions of the agent are listed in Table 3 and 4
(excerpt, complete is available from [3]), respectively. The
state-action chain of this agent interacting with its
environment can be modeled as shown in Figure 7.
Furthermore, this state-action chain can be formally

specified. For instance, state transfer from s; to s, under
condition a; is represented as follows (¢; < £,).

e I apr: AlgoPluginRequest (apr.depender =
PLUGINPERSON A apr.dependee = PluginInterface A
Fulfilled() >

[¢ < , CheckAlgorithmValidity]l, <

AcceptPluginRequest.Fulfilled()

Table 3. AlgoPluginAgent environment state list

State | Description
Si registration request by PluginInterface (A) agent
k) accessible algo model(B) and ontology (C) bases
53 none record of the requested algorithm in base B
Sy algorithm ontologies typed by PluginInterface
Ss algorithm ontology base (C) is accessible
S6 configuration table (C) of ontologies exists
7 data source management base (D) is accessible
s accessible local(E) and remote(F) data sources
Sg specific sources configured by Pluginlnterface
S0 none record in the XML configuration files (G)
Si1 open connections to all information bases BCD
Si2 register result available to PluginInterface BCD
S13 connection closed to all information bases

Table 4. AlgoConfigureAgent action list
Action | Description
a; receive register request from Pluginlnterface
as register and configure ontologies into base C with

help from OntologyService (H)

Fig.7. POMDP state chain for AlgoConfigureAgent
6. RELATED WORK AND DISCUSSION

A number of OOM-related AOSE approaches, for
mmstance, Formal TROPOS, GAIA, MASE, MESSAGE,
OMNI, ROADMAP, SODA, etc., to some degree
implicitly embody or explicitly adopt the organizational
metaphor. Following the attributes captured by the
ORGANISED framework, we discuss the characteristics of
these approaches from the specific perspective of OOA.
GAIA explicitly takes and presents organizational
abstraction and late analysis, but nothing related to
organizational dynamics. Moreover, OOA support in
GAIA, for instance, goal and environment models, and
formal representation, are not actionable. MASE does not
formally adopt the organizational metaphor other than
dealing with goal, interaction and role elements. It uses
Use Case for implicit structure analysis. In the MESSAGE,
goal support is weak, and no support is provided for rules
and environment as in MASE. OMNI includes formal

methods for analyzing norms and structure, but weak
supports for environment. ROADMAP extends GAIA in
aspects such as environment, role, social structures and
relationships, but it doesn’t provide explicit analysis
mechanisms for system dynamics. SODA designs a
conceptual framework with limited supports of practical
analysis. TROPOS and its recent related work [10] bring in
nice techniques for OOM, which mainly depend on goal-
oriented analysis, and may be sufficient except that there is
no support for environment. Among all of the above
approaches, only ROADMAP pays attention to dynamic
changes.

Table 5. Comparison of organization-oriented analysis
R A|IN|I |[S|E|D
v VIV VI

GAIA

MASE
MESSAGE
OMNI
ORGANISED
ROADMAP
SODA
TROPOS

22 (<

elele]elele] |2do
2lefe]e|]

2| |2ded=] |=d=2da
elele]e|eje]e]z]
elele]elelala]
elele]e|elela]
2| |2de] |edeled<
2| |2]=]=]

Table 5 summarizes the above comparison in terms of
main attributes in an OCAS such as O (organization), R
(rule), G (goal), A (actor and role), N (norm), I
(interaction), S (Structure), E (environment), D (dynamics),
and modeling techniques such as V (visual modeling) and
F (formal modeling). Compared with the above existing
OOM-related approaches, the ORGANISED framework
demonstrates promising for explicitly analyzing all main
attributes in open agent systems both visually and formally.

7. CONCLUSIONS AND FUTURE WORK

The organizational metaphor is effective in analyzing
multi-agent systems and in particular open agent systems.
However, almost all existing organization-oriented analysis
approaches expose intrinsic problems and cannot handle
the analysis of OCGS-like agent systems very well. We
primarily attribute these problems to inexplicit and
incomplete organization-oriented abstraction.

To this end, we have demonstrated an organization-
oriented framework, i.e. the ORGANISED, for analyzing
OCAS. Corresponding model-building blocks have been
developed visually and formally in terms of the
ORGANISED members. The main contributions of this
paper are as follows:

(i) Proposed an organization-oriented abstraction
framework called ORGANISED, which explicitly presents
all main members in an OCAS;

(i1)) Developed individual and detailed model-building
blocks for all ORGANISED members in an OCAS;

(iii) Presented them both visually and formally.

The publicly available trading development and
evaluation infrastructure F-Trade has been used as case
study to exemplify the above organization-oriented
analysis. Our experiments with this system have shown
that the proposed approach is helpful and actionable in
analyzing open agent systems.

More work is undertaken on modeling norms, model
checking and requirement refinement in terms of the
proposed framework.

REFERENCES

[1] Beer, R. D.,, “A dynamical systems perspective on agent-
environment interaction”, Artificial intelligence, 72: 173-215, 1995

[2] Caire, G., et al. “Agent-oriented analysis using message/uml”,
Lecture Notes in Computer Science, vol. 2222. Springer Verlag,
New York, 2002, pp.119-135.

[3] Cao, L.B. Zhang, C.Q., Engineering open complex agent systems,
Springer Verlag, 2006.

[4] Cao, L.B., Wang, J.Q. Lin, L. and Zhang, C.Q., “Agent Services-
Based Infrastructure for Online Assessment of Trading Strategies”,
Proceedings of IAT04, IEEE Computer Society Press, 345-349.

[5] Cao, L.B,, Ni, JR., Wang, J.Q. Zhang, C.Q., “Agent Services-
Driven Plug and Play in the F-TRADE”, G.I. Webb and X.H. Yu
(Eds.): A1 2004, LNAI 3339, 2004, pp. 917-922.

[6] Carley, K.M., “Computational and Mathematical Organization
Theory: Perspective and Directions”, Computational —and
Mathematical Organization Theory. 1995, 1(1): 39-56.

[7] Dignum, V.J., Dignum, F., “A Model of Almost Everything:
Norms, Structure and Ontologies in Agent Organizations”,
AAMAS04

[8] FIPA. Foundation for Intelligent Physical Agents, 2004.

[9] Garcia, A., et al. (eds) Software engineering for large-scale multi-

agent systems. 2003, Springer.

Giorgini, P., Kolp, M. and Mylopoulos, J., “Multi-Agents

Architectures as Organizational Structures”, Int. J. of Autonomous

Agents and Multi-Agent Systems, 2004.

Giunchiglia, F., Mylopoulos, J., Perini, A., “The Tropos Software

Development Methodology: Processes, Models and Diagrams”,

AOSE02

[12] Juan, T., Pearce, A., Sterling L., “TROADMAP: Extending the GAIA

Methodology for Complex Open Systems”, AAMAS02

Kolp, M., Giorgini, P., Mylopoulos, J., “A goal-based organizational

perspective on multiagent architectures”, LNAI 2333. Springer-

Verlag, New York, 2002, pp.128-140.

Jennings, N.R., “On Agent-Based Software Engineering”, Artificial

Intelligence, 117 (2) 277-296, 2001.

[15] Manna, Z., and Pnueli, A., The Temporal Logic of Reactive and

Concurrent Systems, 1992, Springer-Verlag.

Odell, J.J., Parunak, H.V.D., Fleischer, M., Brueckner, S.,

“Modeling agents and their environment”, AOSE2002

Omicini, A., “SODA: Societies and Infrastructures in the Analysis

and Design of Agent-based Systems”, In AOSE’2000, Limerick

(Ireland), June 10 2000.

[18] Qian, X.S., Building systemtology, Shanxi Science and Technology

Press, 2004

Vasilyev, A., Synergetic Approach in Adaptive Systems. Master

thesis, Transport and Telecommunication Institute, Riga, Latvia,

2002

Waldrop, M. M., Complexity: the emerging science at the edge of

order and chaos. Simon & Schuster, 1992.

Zambonelli, F. Jennings, N.R., and Wooldridge, M., “Developing

multiagent systems: the GAIA Methodology”, ACM Trans on

Software Engineering and Methodology, 12(3):317-370, 2003

[22] Wood, M., Deloach, S.A., Sparkman, C., “Multiagent system
engineering”, Int. J. Softw. Eng. Knowl. Eng. 11(3): 231-258, 2001.

.—.
=
=

—
—
—

[13

[14

[16

[7

[19

[20

[21

