
Proof rules for the correctness of quantum programs

Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying

State Key Laboratory of Intelligent Technology and Systems,

Department of Computer Science and Technology,

Tsinghua University, Beijing, China, 100084

December 10, 2013

Abstract

We apply the notion of quantum predicate proposed by D’Hondt and Panangaden to analyze
a simple language fragment which may describe the quantum part of a future quantum com-
puter in Knill’s architecture. The notion of weakest liberal precondition semantics, introduced
by Dijkstra for classical deterministic programs and by McIver and Morgan for probabilistic
programs, is generalized to our quantum programs. To help reasoning about the correctness of
quantum programs, we extend proof rules presented by Morgan for classical probabilistic loops
to quantum loops. These rules are shown to be complete in the sense that any correct assertion
about quantum loops can be proved using them. Some illustrative examples are also given to
demonstrate the practicality of our proof rules.

1 Introduction

The theory of quantum computing has attracted considerable research efforts in the past twenty
years. Benefiting from the possibility of superposition of different states and the linearity of quantum
operations, quantum computing may provide considerable speedup over its classical analogue [22, 6,
7]. The existing quantum algorithms, however, are described at a very low level: they are usually
represented as quantum circuits. A few works have been done in developing quantum programming
languages which identify and promote high-level abstractions. The first step of writing quantum
pseudo-code was moved by Knill [11]; while the first actual quantum programming language is due
to Ömer [17, 18]. After that, Sanders and Zuliani [19, 25], Bettelli et al. [2], and Selinger [21] also
proposed various quantum languages each having different features. We refer to [20] for a survey of
this field.

The standard weakest precondition calculus [5] and its probabilistic extension [16] have been
successful in reasoning about the correctness and even the rigorous derivation of classical programs.
This success motivates us to develop analogous tools for quantum programs. Sanders and Zuliani
[19] have provided for their qGCL a stepwise refinement mechanism. The approach, however, is
classical in the sense that they treated quantum programs as special cases of probabilistic programs.
As a consequence, known results about probabilistic weakest precondition calculus can be applied
directly to quantum programs. Indeed, Butler and Hartel [3] have used it to reason about Grover’s
algorithm.

The first step towards really quantum weakest precondition calculus was made by D’Hondt and
Panangaden [4]. They proposed the brilliant idea that we can treat an observable, mathematically
described by a Hermitian matrix, as the quantum analogue of ‘predicate’. The elegant duality be-
tween state-transformer semantics and the weakest precondition semantics (wp-semantics for short)

of quantum programs, when described by completely positive and trace-nonincreasing linear opera-
tors, was then proven to hold in a more direct way.

In this paper, we apply the ideas in [4] to analyze a simple quantum language fragment describing
the quantum part of a potential quantum computer in Knill’s architecture [11]. The syntax follows
Selinger’s style [21] except that we are only concerned with purely quantum data. We make this
limitation on our language fragment merely for the sake of simplification. The results presented in
this paper can be extended easily to a general language where both classical and quantum variables
are involved. The denotational semantics of our language is given and shown to be a super-operator
for each program construct; the wp-semantics which is useful for reasoning about the total correctness
of quantum programs is presented following the correspondence between denotational semantics and
wp-semantics proposed in [4]. To reason about the partial correctness of programs written in our
quantum language, we extend the notion of weakest liberal precondition semantics (wlp-semantics for
short), first introduced by Dijkstra[5] for deterministic programs and then generalized by McIver and
Morgan[13] for probabilistic programs, to our quantum language. The numerical relations between
these three semantics are also discussed.

In order to help reasoning about quantum programs involving loops, we extend the notion of
loop invariant which is the key in correctness proving of classical programs (see [5] for deterministic
and [15] for probabilistic loop invariants) to quantum setting. Based on it, we develop some rules to
reason about the partial and total correctness of quantum loops. These rules are natural quantum
extensions of those for classical probabilistic programs introduced by Morgan[15]. We also show
the completeness of these rules in the sense that any correct assertion about quantum loops can be
proved using them. To demonstrate the practicality of our proof rules, some illustrative examples
are also presented. Particularly, we consider a discrete coined quantum walk on an n-cycle with
an absorbing boundary at position 1, and prove using our proof rules that this kind of walk will
ultimately terminate at position 1 with unit probability.

This paper is organized as follows. Section 2 is the preliminary part where basic concepts and
notations used in this paper are reviewed. In Section 3, we propose the syntax and denotational
semantics of our quantum language fragment. The wp-semantics is also given following the cor-
respondence presented in [4]. Our main contribution starts from Section 4, where we extend the
notion of wlp-semantics to the quantum language we consider. The quantity relations of these three
semantics presented are also discussed. In Section 5, the wp- and wlp-semantics are used to present
some proof rules of reasoning about quantum loop programs. The completeness of this rules are
proved and some illustrative examples are also given. Section 6 is the concluding section in which
we draw the conclusion and point out some problems for further studies.

2 Preliminaries

Let H be the associated (finite-dimensional) Hilbert space of the quantum system we are concerned
with, and L(H) the set of linear operators (or complex matrices when an orthonormal basis of H is
given. We do not distinguish between these two notions) on H. For any linear operator A ∈ L(H),
we have the following definitions:

1. A is hermitian if A† = A where A† is the adjoint operator of A such that 〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗
for any states |ψ〉, |φ〉 ∈ H. Here for any complex number c, c∗ denotes the complex conjugate
of c.

2. A is positive if 〈ψ|A|ψ〉 ≥ 0 for all |ψ〉 ∈ H; it is positive-definite if for any nonzero vector |ψ〉,
〈ψ|A|ψ〉 > 0. Note that a positive operator is also hermitian.

3. The trace of A is defined as tr(A) =
∑n

i=1〈i|A|i〉 for some given orthonormal basis {|i〉, i =
1, . . . , n} of H. Note also that the trace function is actually independent of the orthonormal

2

basis selected. Properties of trace function that will be used in this paper are the linearity and
that tr(AB) = tr(BA) for any operators A,B ∈ L(H).

With these notations, the set of all density operators (or alternatively, density matrices) on H can
be defined as

DH := { ρ ∈ L(H) | 0 v ρ, tr(ρ) ≤ 1},

where 0 denotes the zero operator. The partial order v is defined on L(H) by letting M v N if
N −M is positive. The convention of allowing the trace of a density matrix to be less than 1 makes
it possible to represent both the actual state (by the normalized density matrix) and the probability
with which the state is reached (by the trace of the density matrix) in a single expression[21].

Recall further that for any linear operator E ∈ L(H)→ L(H), E is said to be

1. positive if it maps positive operators in L(H) to positive operators in L(H);

2. completely positive if it is positive and so is the trivially extended operator

I ⊗ E ∈ L(H′ ⊗H)→ L(H′ ⊗H)

for any auxiliary Hilbert space H′. Here I is the identity map in L(H′). The elegant and
powerful Kraus representation[12] of completely positive operators states that a map E is
completely positive if and only if

E(ρ) =

d∑
i=1

EiρE
†
i

for some set of matrices {Ei, i = 1, . . . , d}. The matrices Ei are called Kraus operators of E .

3. trace-nonincreasing if trE(A) ≤ tr(A) for any linear operator A ∈ L(H); it is trace-preserving
if trE(A) = tr(A) for all A ∈ L(H);

4. a super-operator if it is completely positive and trace-nonincreasing. In another word, a
super-operator is a just completely positive operator with its Kraus operators Ei satisfying∑

iE
†
iEi v I.

Then the set of quantum programs over H can be defined as

QH := {E ∈ DH → DH | E is a super-operator}.

The partial order on QH is defined naturally by letting E v F if F − E is completely positive. It is
proved in [4] that the two sets DH and QH are both CPOs.

In D’Hondt and Panangaden’s approach, a quantum predicate is described by a positive matrix
with the maximum eigenvalue bounded by 1. To be specific, the set of quantum predicates on Hilbert
space H is defined by

PH := {M ∈ L(H) | 0 vM v I}.

This set, when equipped with the partial order defined above for L(H), is also a CPO [4]. For
any ρ ∈ DH and M ∈ PH, the degree of ρ satisfying M is denoted by the expression trMρ. It is
exactly the expectation (or average value according to respective probabilities) of the measurement
outcomes when measuring the observable represented by M on the state ρ.

Notice that by definition, DH ⊆ PH, which means that any density matrix is automatically
a quantum predicate. Particularly, if M = |ψ〉〈ψ| for some normalized pure state |ψ〉 ∈ H, then
trMρ = 〈ψ|ρ|ψ〉 is just the fidelity1 between ρ and |ψ〉〈ψ|, or the probability of observing |ψ〉 when

1Fidelity is a kind of ‘distance’ between quantum states defined by F (ρ, σ) =
(

tr
√
ρ1/2σρ1/2

)2
.

3

measuring ρ according to an orthonormal basis involving |ψ〉. This observation will be used to give
an explanation of wp.S.|ψ〉〈ψ| in Section 3.

The ‘healthy’ predicate transformers which exactly characterize all valid quantum programs are
shown to be those who are linear and completely positive [4]. Particularly, D’Hondt and Panangaden
proved that quantum weakest precondition exists for any completely positive map by exploiting
Kraus representation theorem. This kind of wp-semantics indeed gives an isomorphism between the
set of healthy quantum predicate transformers

T H := {T ∈ PH ← PH | T is linear and completely positive}

and the set of quantum programs QH defined above, just as the cases for classical deterministic
[5] and probabilistic programs [16]. Here we write the arrow backwards in the definition of T H
to emphasize that it is actually a backward transformation from post-conditions to preconditions,
compared with the forward transformation inQH, which is from initial states to final states. D’Hondt
and Panangaden also used their weakest precondition approach to prove the correctness of Grover’s
search algorithm. Note that there is no loop in Grover’s algorithm since the number of iterations
is pre-specified. One of the main contributions of the present paper is to extend D’Hondt and
Panangaden’s proposal to help reasoning about the correctness of quantum loops.

3 The syntax and the denotational/weakest precondition se-
mantics

In this paper, we concentrate our attention on the purely quantum fragment of a general quan-
tum programming language in the sense that only quantum data but no classical data are consid-
ered. Following Knill’s QRAM model [11], a quantum computer in the future possibly consists of a
general-purpose classical computer which controls a special quantum hardware device. Our quantum
language considered here then aims at describing the action of the special quantum device, rather
than the behavior of the whole computer including the classical controller. Note that the results of
this paper can be easily extended to the general programming language by, for example, presenting
classical and quantum variables by tuples of density matrices, and by extending quantum predicates
to tuples of quantum predicates, just as what has been done in [21] and [4].

Suppose S, S0 and S1 denote quantum programs, q1, . . . , qn and q denote qubit-typed variables,
and U denotes a unitary transformation which applies on a 2n-dimensional Hilbert space. Then the
syntax of our quantum language fragment is defined as follows:

S ::= abort | skip | q := 0 | q1, q2, . . . , qn ∗= U | S0;S1 |
measure q then S1 else S0 | while q do S

Here we borrow the notations from [21] except for abort and the loop statements. Intuitively, abort
is the nowhere-terminating program, and q := 0 initializes qubit q by setting it to the standard state
|0〉. The statement q1, q2, . . . , qn ∗= U applies the unitary transformation U on the n distinct qubits
q1, q2, . . . , qn. We put the constraint that q1, q2, . . . , qn must be distinct to avoid syntactically some
no-go operations such as quantum cloning. The statement measure q then S1 else S0 first applies
a measurement on qubit q according to the computational basis, then executes S1 or S0 depending
on whether the measurement result is 1 or 0. The loop statement while q do S measures qubit q
first, also according to the computational basis. If the result is 0, then it terminates; otherwise it
executes S and the loop repeats.

Formally, we have the following definition of denotational semantics:

Definition 3.1 For any quantum program S, the denotational semantics of S is a map [[S]] from
DH to DH defined inductively in Figure 1.

4

Figure 1: Denotational semantics

[[abort]]ρ := 0

[[skip]]ρ := ρ

[[q := 0]]ρ := |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|
[[q̄ ∗= U]]ρ := Uq̄ρU

†
q̄

[[S1;S2]]ρ := [[S2]]([[S1]]ρ)

[[measure q then S1 else S0]]ρ := [[S1]](|1〉q〈1|ρ|1〉q〈1|) + [[S0]](|0〉q〈0|ρ|0〉q〈0|)
[[while q do S]] := µX · (measure q then S;X else skip)

In Definition 3.1 and in the rest of this paper, q̄ denotes the abbreviation of q1, . . . , qn, Uq̄ means
applying U on the Hilbert space spanned by qubits q̄, and |x〉q〈y| denotes the operator which applies
|x〉〈y| on qubit q, leaving other qubits unchanged. That is,

|x〉q〈y| = IH1
⊗ |x〉〈y| ⊗ IH2

(1)

for some appropriate Hilbert spaces H1 and H2.
Notice that if a measurement according to the computational basis {|0〉, |1〉} is applied on qubit

q when the whole system is in state ρ, the probability of observing outcome i is pi = tr|i〉q〈i|ρ|i〉q〈i|,
and the post-measurement state of the whole system when i is observed is ρi = |i〉q〈i|ρ|i〉q〈i|/pi,
i = 0, 1. So the final output of the statement “measure q then S1 else S0” when ρ is input is

1∑
i=0

pi[[Si]]ρi =

1∑
i=0

[[Si]]|i〉q〈i|ρ|i〉q〈i|.

That justifies the definition of this statement in Definition 3.1.
The following lemma shows that the denotational semantics of our quantum programs are all

super-operators. So they can be physically implemented in a future quantum computer.

Lemma 3.2 For any quantum program S, the denotational semantics of S is a super-operator on
DH, i.e., [[S]] ∈ QH.

Proof. The only case we should prove is when S ≡ while q do S′ is a quantum loop. In this case,
it is direct from definition that

[[S]] = µX · (X ◦ [[S′]] ◦ E1 + E0)

where Ei are super-operators such that for any ρ ∈ DH, Ei(ρ) = |i〉q〈i|ρ|i〉q〈i|. Now suppose
inductively that [[S′]] ∈ QH. Then the map

X → X ◦ [[S′]] ◦ E1 + E0

is Scott-continuous on QH. From the fact that QH is a CPO ([21]), we derive the desired result
that [[S]] ∈ QH. �

5

Figure 2: Weakest precondition semantics

wp.abort.M := 0

wp.skip.M := M

wp.(q := 0).M := |0〉q〈0|M |0〉q〈0|+ |1〉q〈0|M |0〉q〈1|
wp.(q̄ ∗= U).M := U†q̄MUq̄

wp.(S1;S2).M := wp.S1.(wp.S2.M)

wp.(measure q then S1 else S0).M :=

1∑
i=0

|i〉q〈i|wp.Si.M |i〉q〈i|

wp.(while q do S).M := µX · (|1〉q〈1|wp.S.X|1〉q〈1|+ |0〉q〈0|M |0〉q〈0|)

Recall that from [4], any super-operator E can be given a corresponding wp-semantics as follows:
suppose

E(ρ) =
∑
k

EkρE
†
k, ∀ρ ∈ DH (2)

with
∑

k E
†
kEk v I is the Kraus representation of E . Then wp.E is also a completely positive operator

with the Kraus representation

wp.E .M =
∑
k

E†kMEk, ∀M ∈ PH. (3)

Following this idea, we define the wp-semantics for our quantum language as follows:

Definition 3.3 For any quantum program S, the wp-semantics of S is defined by a map wp.S from
PH to PH defined inductively in Figure 2.

Lemma 3.4 The wp-semantics defined in Figure 2 indeed gives the desired correspondence. That
is, for any quantum program S, if {Ek, k = 1, . . . , d} are the Kraus operators of [[S]], then wp.S is

also completely positive, and has {E†k, k = 1, . . . , d} as its Kraus operators.

Proof. It is easy to check. So we omit the details here. �

The following theorem shows a quantitative relation between denotational semantics and wp-
semantics. Intuitively, the average outcome when observing a quantum predicate on the output of a
quantum program is equal to the average outcome when observing the weakest precondition of this
predicate with respect to the program on the input state.

Theorem 3.5 For any quantum program S, quantum predicate M ∈ PH, and ρ ∈ DH, we have

tr(wp.S.M)ρ = trM [[S]]ρ (4)

Proof. Direct from Lemma 3.4 and Proposition 3.3 of [4]. �

6

Corollary 3.6 The map wp.S is linear on PH for any quantum program S. That is, for any
λ, µ ∈ R and M,N ∈ PH,

wp.S.(λM + µN) = λ(wp.S.M) + µ(wp.S.N)

provided that λM + µN ∈ PH.

Taking M = I in Eq.(4), we have

tr(wp.S.I)ρ = tr[[S]]ρ.

Notice that the righthand side of the above equation is exactly the probability that the program
S terminates on input state ρ. So intuitively, the quantum predicate wp.S.I denotes the condition
the program S terminates, in analogy with the predicate wp.S.true in classical deterministic setting
and wp.S.1 in probabilistic setting.

Another special case which is also worth noting is when M = |ψ〉〈ψ| for some normalized pure
state |ψ〉. In this case, Eq.(4) becomes

tr(wp.S.|ψ〉〈ψ|)ρ = tr|ψ〉〈ψ|[[S]]ρ = 〈ψ|[[S]]ρ|ψ〉.

The quantity 〈ψ|[[S]]ρ|ψ〉 denotes either the fidelity between [[S]]ρ and |ψ〉〈ψ| or the probability of
observing |ψ〉 when measuring [[S]]ρ according to an orthonormal basis involving |ψ〉. So intuitively,
the quantum predicate wp.S.|ψ〉〈ψ|, when performed on the initial state, gives us information about
the precision of the actual output of program S to approximate the desired output |ψ〉, or the
probability for S, when followed by a measurement according to an orthonormal basis involving |ψ〉,
to correctly output |ψ〉.

4 The weakest liberal precondition semantics

We have so far defined the wp-semantics, which is useful when we consider the total correctness of
quantum programs. That is, what we care is not only the correctness of the final state when the
program terminates, but also the condition a quantum program can terminate. To deal with partial
correctness of quantum programs, we extend the notion of wlp-semantics to our quantum language
as follows:

Definition 4.1 For any quantum program S, the wlp-semantics of S is defined by a map wlp.S
from PH to PH defined inductively in Figure 3.

Analogous with Theorem 3.5, the following theorem shows a quantitative connection between
wp-semantics and denotational semantics.

Theorem 4.2 For any quantum program S, quantum predicate M ∈ PH, and ρ ∈ DH, we have

tr(wlp.S.M)ρ = trM [[S]]ρ+ trρ− tr[[S]]ρ. (5)

Proof. We need only to consider the case when S ≡ while q do S′ is a quantum loop. Other cases
are easier to check.

First, from definition we have

[[while q do S′]]ρ =

∞⊔
i=0

E i(ρ) (6)

7

Figure 3: Weakest liberal precondition semantics

wlp.abort.M := I

wlp.skip.M := M

wlp.(q := 0).M := |0〉q〈0|M |0〉q〈0|+ |1〉q〈0|M |0〉q〈1|
wlp.(q̄ ∗= U).M := U†q̄MUq̄

wlp.(S1;S2).M := wlp.S1.(wlp.S2.M)

wlp.(measure q then S1 else S0).M :=

1∑
i=0

|i〉q〈i|wlp.Si.M |i〉q〈i|

wlp.(while q do S).M := νX · (|1〉q〈1|wlp.S.X|1〉q〈1|+ |0〉q〈0|M |0〉q〈0|)

where for any ρ ∈ DH, E0(ρ) = 0 and

E i+1(ρ) = E i([[S′]]|1〉q〈1|ρ|1〉q〈1|) + |0〉q〈0|ρ|0〉q〈0|;

while

wlp.(while q do S′).M =

∞l

i=0

F i(M), (7)

where for any M ∈ PH, F0(M) = I and

F i+1(M) = |1〉q〈1|wlp.S′.F i(M)|1〉q〈1|+ |0〉q〈0|M |0〉q〈0|.

Suppose Eq.(5) holds for the program S′, i.e.,

∀M ∈ PH, ρ ∈ DH · tr(I − wlp.S′.M)ρ = tr(I −M)[[S′]]ρ. (8)

We now prove by induction that for any i ≥ 0

∀M ∈ PH, ρ ∈ DH · tr(I −F i(M))ρ = tr(I −M)E i(ρ). (9)

When i = 0, Eq.(9) holds because both sides equal to 0. Suppose now Eq.(9) holds for i = k.
Then when i = k + 1, we calculate that for any M ∈ PH and ρ ∈ DH,

tr(I −Fk+1(M))ρ

= trρ− trwlp.S′.Fk(M)|1〉q〈1|ρ|1〉q〈1| − trM |0〉q〈0|ρ|0〉q〈0|
= tr(I − wlp.S′.Fk(M))|1〉q〈1|ρ|1〉q〈1|+ tr(I −M)|0〉q〈0|ρ|0〉q〈0|
= tr(I −Fk(M))([[S′]]|1〉q〈1|ρ|1〉q〈1|) + tr(I −M)|0〉q〈0|ρ|0〉q〈0| by Eq.(8)

= tr(I −M)Ek([[S′]]|1〉q〈1|ρ|1〉q〈1|) + tr(I −M)|0〉q〈0|ρ|0〉q〈0| by induction hypothesis

= tr(I −M)Ek+1(ρ).

8

So we deduce that Eq.(9) holds for any i ≥ 0. Notice that the operation tr(·) is linear. We further
calculate

tr(wlp.S.M)ρ = tr(uiF i(M))ρ

= uitrF i(M)ρ

= ui(trρ− tr(I −M)E i(ρ)) by Eq.(9)

= trρ− titr(I −M)E i(ρ)

= trρ− tr(I −M) ti E i(ρ)

= trρ− tr(I −M)[[S]]ρ.

That completes our proof. �

Taking M = 0 in Eq.(5), we have

tr(wlp.S.0)ρ = trρ− tr[[S]]ρ.

Notice that the righthand side of the above equation is exactly the probability the program S does
not terminate when the input state is ρ. So intuitively the quantum predicate wlp.S.0 denotes the
condition the program S diverges.

Corollary 4.3 For any quantum program S and quantum predicate M ∈ PH,

wp.S.M v wlp.S.M

and
wlp.S.M + wp.S.(I −M) = I.

Proof. Direct from Theorems 3.5 and 4.2.

To get a clearer picture of the connection between these two precondition semantics, let us intro-
duce a notion which can be regarded as the analogue of conjunction ∧ of classical standard predicates
and probabilistic conjunction & of probabilistic predicates. Note that in [15], the conjunction & of
probabilistic predicates α, β : Σ→ [0, 1] is defined by

α & β = (α+ β)	 1

where Σ is the state space, 1 is the predicate which takes value 1 everywhere, and for any state
s ∈ Σ,

(α	 β).s = max{α.s− β.s, 0}.

Definition 4.4 Suppose M and N are two quantum predicates. We define M&N as

M&N := (M +N − I)+,

where for any hermitian matrix X, if X =
∑

i λiPi is the spectrum decomposition of X, then
X+ =

∑
i max{λi, 0}Pi.

When M and N commute, i.e. when MN = NM , suppose λ(M), λ(N), and λ(M&N) denote
respectively the vector of the eigenvalues of M,N , and M&N arranged in some pre-specified order
of their (common) eigenvectors. Then

λ(M&N) = λ(M) + λ(N)	 1

which coincides with the case of probabilistic setting.
Note that the quantum conjunction defined in Definition 4.4 is not monotonic in general because

the operation (·)+ is not monotonic for hermitian matrices. A simple example is as follows. Let
M = |0〉〈1|+ |1〉〈0| and N = M + |0〉〈0| wM . It is not difficult to check that M+ 6v N+.

9

Theorem 4.5 For any quantum predicates M,N ∈ PH and any quantum program S, if M+N w I
then

wp.S.(M&N) = wlp.S.M & wp.S.N (10)

and
wlp.S.(M&N) = wlp.S.M & wlp.S.N (11)

Proof. From the assumption that M +N w I, we have M&N = M +N − I. Then

wlp.S.M & wp.S.N

= (wlp.S.M + wp.S.N − I)+

= (wp.S.N − wp.S.(I −M))+ Corollary 4.3

= wp.S.(M +N − I) Corollary 3.6, and the assumption that M +N w I
= wp.S.(M&N).

That proves Eq.(10). For Eq.(11), we calculate that

wlp.S.(M & N)

= wlp.S.(M +N − I)

= I − wp.S.(2I −M −N) Corollary 4.3

= I − wp.S.(I −M)− wp.S.(I −N) Corollary 3.6

= wlp.S.M + wlp.S.N − I. Corollary 4.3

Then we have wlp.S.(M&N) = wlp.S.M & wlp.S.N because wlp.S.(M&N) w 0. �

It may be surprising at first glance that the operation & is not symmetric in Eq.(10). In fact,
we can prove similarly that wp.S.(M&N) = wp.S.M & wlp.S.N .

When taking N = I in Eq.(10), we have the following direct but useful corollary:

Corollary 4.6 For any quantum program S and quantum predicate M ,

wp.S.M = wlp.S.M & wp.S.I (12)

Recall that wp.S.I denotes the condition the program S terminates. So the intuitive meaning of
Eq.(12) is that a program is totally correct (represented by wp-semantics) if and only if it is partially
correct (represented by wlp-semantics) and it terminates. This captures exactly the intuition of total
correctness and partial correctness.

To conclude this section, we present some properties of wlp-semantics which are useful in the
next section. The proofs are direct so we omit the details here.

Lemma 4.7 For any quantum program S and quantum predicate M,N ∈ PH, we have

1. wlp.S.I = I;

2. (monotonicity) if M v N then wlp.S.M v wlp.S.N ;

3. if M +N v I then wlp.S.(M +N) = wp.S.M + wlp.S.N ;

4. if M w N then wlp.S.(M −N) = wlp.S.M − wp.S.N .

10

5 Proof rules for quantum loops

Proof rules for programs are important on the way to designing more general refinement techniques
for programming. In this section, we derive some proof rules for reasoning about loops in our
quantum language fragment. We find that almost all loop rules derived in classical probabilistic
programming (see, for example, [14] or [15]) can be extended to quantum case.

In classical deterministic or probabilistic programming languages, an appropriate invariant is
the key for reasoning about loops. It is also true in quantum case. So our first theorem is devote
to reasoning about quantum loops within partial correctness setting using wlp-invariants. Recall
that in classical probabilistic programming, if Inv is a wlp-invariant of a loop statement loop ≡
“while b do S” satisfying

[b] ∗ Inv V wlp.S.Inv, (13)

then
Inv V wlp.loop.([b] ∗ Inv).

Here b is a boolean variable with [b] its truth-value function over the state space and b its negative.
The symbol “V” means “everywhere no more than”, which is the probabilistic analogue of the
implication relation “⇒” in standard logic; and ∗ is the pointwise multiplication defined between
two probabilistic predicates.

Theorem 5.1 For any quantum predicate M ∈ PH, if

|1〉q〈1|M |1〉q〈1| v |1〉q〈1|wlp.S.M̃q|1〉q〈1| (14)

then
M̃q v wlp.qloop.(|0〉q〈0|M |0〉q〈0|).

Here and in what follows, by qloop we denote the quantum program “while q do S”; and for any
quantum predicate M , M̃q represents the abbreviation of

∑1
i=0 |i〉q〈i|M |i〉q〈i|.

Note that by definition, |i〉q〈i| denotes the projector onto the subspace Hi of H where the qubit q is
in the state |i〉〈i|. So from Theorem 5.1, if the projection of M onto the subspace H1 is below the

projection of wlp.S.M̃q onto H1, then M̃q is a liberal precondition of |0〉q〈0|M |0〉q〈0|, the projection
of M onto the subspace H0, with respect to qloop.

Proof. By definition, we have

wlp.qloop.(|0〉q〈0|M |0〉q〈0|) =

∞l

i=0

Mi,

where M0 = I and for i ≥ 0,

Mi+1 = |1〉q〈1|wlp.S.Mi|1〉q〈1|+ |0〉q〈0|M |0〉q〈0|.

In what follows, we prove by induction that for any i ≥ 0,

M̃q vMi. (15)

When i = 0, Eq.(15) holds trivially. Suppose Eq.(15) holds for i = k. Then when i = k + 1, we
have

Mk+1 = |1〉q〈1|wlp.S.Mk|1〉q〈1|+ |0〉q〈0|M |0〉q〈0|
w |1〉q〈1|wlp.S.M̃q|1〉q〈1|+ |0〉q〈0|M |0〉q〈0|

induction hypothesis and Lemma 4.7.2

w |1〉q〈1|M |1〉q〈1|+ |0〉q〈0|M |0〉q〈0| Eq.(14)

= M̃q

11

With that we complete the proof of this theorem. �

In the following, we call M̃q a wlp-invariant of qloop if Eq.(14) holds; similarly, M̃q is said to be
a wp-invariant of qloop if

|1〉q〈1|M |1〉q〈1| v |1〉q〈1|wp.S.M̃q|1〉q〈1|. (16)

Note that Eq.(13) is equivalent to

[b] ∗ Inv V [b] ∗ wlp.S.Inv.

This justifies that Eq.(14) is indeed a quantum generalization of probabilistic wlp-invariant.

Lemma 5.2 For any quantum predicate M ,

1. the predicate wlp.qloop.M is a wlp-invariant of qloop,

2. the predicate wp.qloop.M is a wp-invariant of qloop.

Proof. We only prove 1. The proof of 2 is similar. Let M ′ = wlp.qloop.M . By definition, we know

M ′ = |1〉q〈1|wlp.S.M ′|1〉q〈1|+ |0〉q〈0|M |0〉q〈0|. (17)

It is then direct that
|1〉q〈1|M ′|1〉q〈1| = |1〉q〈1|wlp.S.M ′|1〉q〈1| (18)

and
|0〉q〈0|M ′|0〉q〈0| = |0〉q〈0|M |0〉q〈0|. (19)

Thus we have M ′ = M̃ ′q, and now Eq.(18) becomes

|1〉q〈1|M ′|1〉q〈1| = |1〉q〈1|wlp.S.M̃ ′q|1〉q〈1|,

which just states that M ′ = M̃ ′q is a wlp-invariant of qloop. �

Using this lemma, we can show that the proof rule presented in Theorem 5.1 is complete for rea-
soning about the partial correctness of quantum loops in the sense that whenever N v wlp.qloop.N ′
holds for quantum predicates N and N ′, we can prove it using the proof rule in Theorem 5.1 (and
the monotonicity of wlp).

Theorem 5.3 (completeness for partial correctness) For any quantum predicates N and N ′, if

N v wlp.qloop.N ′ then there exists a quantum predicate M such that M̃q is a wlp-invariant of
qloop, and

1. N v M̃q,

2. wlp.qloop.|0〉q〈0|M |0〉q〈0| v wlp.qloop.N ′.

Proof. Let M = wlp.qloop.N ′. By Lemma 5.2.1 we know that M̃q = M , and it is a wlp-invariant
of qloop. Then 1 holds automatically. Furthermore, we have |0〉q〈0|M |0〉q〈0| = |0〉q〈0|N ′|0〉q〈0| by
Eq.(19). Thus 2 is satisfied by noting that

wlp.qloop.|0〉q〈0|N ′|0〉q〈0|
= νX · |1〉q〈1|wlp.S.X|1〉q〈1|+ |0〉q〈0|N ′|0〉q〈0| (20)

= wlp.qloop.N ′.

12

�

We now turn to reasoning about quantum loops in total correctness setting. To simplify notations,
we define

T := wp.qloop.I.

Intuitively, T denotes the termination condition of qloop. For any quantum loop, if a wp-invariant
implies the termination condition, then its partial correctness is sufficient to guarantee its total
correctness, as the following theorem states.

Theorem 5.4 For any quantum predicate M ∈ PH, if M̃q is a wp-invariant of qloop and M̃q v T,
then

M̃q v wp.qloop.(|0〉q〈0|M |0〉q〈0|).

Proof. Let
M ′ = M̃q + I − T. (21)

Notice that from the definition

T = µX · |1〉q〈1|wp.S.X|1〉q〈1|+ |0〉q〈0|,

we have
|1〉q〈1|T |1〉q〈1| = |1〉q〈1|wp.S.T |1〉q〈1|, (22)

|0〉q〈0|T |0〉q〈0| = |0〉q〈0|, (23)

and then T̃q = T , M̃ ′q = M ′. Furthermore, we derive 0 v M ′ v I by the the assumption that

M̃q v T . So M ′ is also a quantum predicate. We now calculate

|1〉q〈1|wlp.S.M̃ ′q|1〉q〈1|

= |1〉q〈1|wlp.S.(M̃q + I − T)|1〉q〈1|
= |1〉q〈1|(wp.S.M̃q + wlp.S.(I − T))|1〉q〈1| Lemma 4.7.3

= |1〉q〈1|(wp.S.M̃q + wlp.S.I − wp.S.T)|1〉q〈1| Lemma 4.7.4

w |1〉q〈1|M |1〉q〈1|+ |1〉q〈1| − |1〉q〈1|T |1〉q〈1| Lemma 4.7.1 and Eqs.(16), (22)

= |1〉q〈1|M ′|1〉q〈1|.

It then follows that M̃ ′q is a wlp-invariant of qloop. We further calculate

M̃q = M̃ ′q + T − I
v wlp.qloop.(|0〉q〈0|M ′|0〉q〈0|) + T − I Theorem 5.1

= wlp.qloop.(|0〉q〈0|M ′|0〉q〈0|) & T

= wp.qloop.(|0〉q〈0|M ′|0〉q〈0|) Eq. (12)

= wp.qloop.(|0〉q〈0|M |0〉q〈0|). Eqs. (21), (23)

That completes our proof. �

Analogue to Theorem 5.3, we can show that the proof rule presented in Theorem 5.4 is also
complete for reasoning about the total correctness of quantum loops.

Theorem 5.5 (completeness for total correctness) For any quantum predicates N and N ′, if N v
wp.qloop.N ′ then there exists a quantum predicate M such that M̃q is a wp-invariant of qloop, and

13

1. M̃q v T ,

2. N v M̃q,

3. wp.qloop.|0〉q〈0|M |0〉q〈0| v wp.qloop.N ′.

Proof. Let M = wp.qloop.N ′. By Lemma 5.2.2, M̃q = M , and it is a wp-invariant of qloop. Then we

have M̃q v T by the monotonicity of wp.qloop. The rest of the proof is similar to that of Theorem
5.3. �

To demonstrate the power of the proof rules presented so far, let us consider an interesting
example. As we know, quantum walk is a natural quantum extension of classical random walk,
which in turn has proved to be a fundamental tool in computer science, especially in the designing
of algorithms [10]. In this example, we consider a discrete coined quantum walk on an n-cycle with
an absorbing boundary at position 1, and prove the property of this kind of quantum walk using our
proof rules presented in Theorems 5.1 and 5.4. For more details about quantum walk on a cycle, or
more generally, on any graph, we refer to [1].

Example 5.6 Let Hc be a 2-dimensional ‘coin’ space with orthonomal basis states |0〉 and |1〉, and
Hp be the n-dimensional principle space spanned by the position vectors |i〉 : i = 0, . . . , n − 1. Let
Hq be the state space of an auxiliary qubit q which indicates whether or not the position of current
walk is 1. Then each step of the quantum walk we are concerned with consists of four sub-steps:

1. A ‘coin-tossing operator’ H = |+〉〈0|+ |−〉〈1| is applied to the coin space, where |+〉 = (|0〉+
|1〉)/

√
2 and |−〉 = (|0〉 − |1〉)/

√
2.

2. A shift operator

S =

n−1∑
i=0

|i	 1〉〈i| ⊗ |0〉〈0|+
n−1∑
i=0

|i⊕ 1〉〈i| ⊗ |1〉〈1|

is performed on the space Hp⊗Hc, which makes the quantum walk one step left or right accord-
ing to the coin state. Here 	 and ⊕ denote subtraction and addition modulo n, respectively.

3. A controlling operator

V = I ⊗
∑
i 6=1

|i〉〈i|+ σ1 ⊗ |1〉〈1|,

where σ1 = |0〉〈1|+|1〉〈0| is one of the pauli matrices, is applied on the space Hq⊗Hp to transfer
the information about whether or not the current walk is in position 1 to the indicating qubit
q.

4. Measure the indicating qubit q to see if the current position of the walk is 1. If the answer is
‘yes’ then terminate the walk, otherwise the walk continues.

Formally, we can formulate the walk described above by a quantum loop, denoted in the following by
qwalk, as

while q do q ∗= U (24)

where U = (Vqp ⊗ Ic)(Iq ⊗ Spc)(Iqp ⊗ Hc), and q = q, q′ is a sequence of quantum qubits in the
Hilbert space Hq ⊗Hp ⊗Hc. We write the subscripts for each operation to indicate which subspace
the operation is performed on.

We now show in the following that starting from any state with the auxiliary qubit q being in
|1〉〈1|, this loop will terminate, and output a final state where the auxiliary qubit is in |0〉〈0| and the
principle system lies in |1〉〈1|. Using the language of wp-semantics, we need to show

|1〉q〈1| ⊗ Ipc v wp.qwalk.(|01〉qp〈01| ⊗ Ic). (25)

14

To this end, we need to find an appropriate wp-invariant since it is the key to apply the proof rule
presented in Theorem 5.4. Let

M = |01〉qp〈01| ⊗ Ic + |1〉q〈1| ⊗ Ipc

We now check that the predicate M̃q = M is indeed a wp-invariant (also a wlp-invariant because the
loop body is merely a unitary transformation) of qwalk. First,

(V †qp ⊗ Ic)M̃q(Vqp ⊗ Ic)
= (V †qp ⊗ Ic) (|01〉qp〈01| ⊗ Ic + |11〉qp〈11| ⊗ Ic + |1〉q〈1| ⊗ (Ip − |1〉p〈1|)⊗ Ic) (Vqp ⊗ Ic)
= |11〉qp〈11| ⊗ Ic + |01〉qp〈01| ⊗ Ic + |1〉q〈1| ⊗ Ipc − |11〉qp〈11| ⊗ Ic
= |1〉q〈1| ⊗ Ipc + |01〉qp〈01| ⊗ Ic.

So we have

|1〉q〈1|wp.(q ∗= U).M̃q|1〉q〈1|
= |1〉q〈1|U†M̃qU |1〉q〈1|
= |1〉q〈1|(Iqp ⊗H†c)(Iq ⊗ S†pc)(V †qp ⊗ Ic)M̃q(Vqp ⊗ Ic)(Iq ⊗ Spc)(Iqp ⊗Hc)|1〉q〈1|
= |1〉q〈1|(Iq ⊗W †pc)(|1〉q〈1| ⊗ Ipc + |01〉qp〈01| ⊗ Ic)(Iq ⊗Wpc)|1〉q〈1|
= |1〉q〈1|(|1〉q〈1| ⊗ Ipc + |0〉q〈0| ⊗W †pc(|1〉p〈1| ⊗ Ic)Wpc)|1〉q〈1|
= |1〉q〈1| ⊗ Ipc
= |1〉q〈1|M |1〉q〈1|

where Wpc = Spc(Ip ⊗Hc) is a unitary operator on Hp ⊗Hc.
It was shown in [24] that the quantum loop qwalk is almost terminating in the sense that for

any input state, the probability of nontermination after m steps of iteration will tend to 0 when m
tends to infinity. That is, it holds that ∀ρ ∈ DH· tr([[qwalk]]ρ) = trρ. Then by Theorem 3.5 we have
wp.qwalk.Iqpc = Iqpc.

Now applying Theorem 5.4 we have M̃q v wp.qwalk.(|0〉q〈0|M |0〉q〈0|). Then Eq.(25) holds by
noting that |01〉qp〈01| ⊗ Ic w 0 and |0〉q〈0|M |0〉q〈0| = |01〉qp〈01| ⊗ Ic. Notice that from the above
argument, we have indeed proved an even stronger result

|01〉qp〈01| ⊗ Ic + |1〉q〈1| ⊗ Ipc v wp.qwalk.(|01〉qp〈01| ⊗ Ic) (26)

which states additionally that from the initial state where the auxiliary qubit is in |0〉 and the principle
system is in |1〉, this loop will also terminate at a state where these two subsystems keep untouched.
This coincides with our intuition since in this case, the loop body will not executed and so nothing
will be changed.

To conclude this section, we generalize the 0-1 law in classical programming [15] to quantum
case.

Lemma 5.7 For any quantum predicate M ∈ PH, if M̃q is a wp-invariant of qloop, and there exists

0 < p ≤ 1 such that p ∗ M̃q v T then M̃q v T. Here we abuse the symbol ∗ as the multiplication
between a number and a matrix.

Proof. Let M ′ := p ∗M . Then M̃ ′q v T and furthermore,

|1〉q〈1|M ′|1〉q〈1| = p ∗ |1〉q〈1|M |1〉q〈1|
v p ∗ |1〉q〈1|wp.S.M̃q|1〉q〈1|
= |1〉q〈1|wp.S.M̃ ′q|1〉q〈1|. Corollary 3.6

15

So we can derive that

p ∗ M̃q = M̃ ′q

v wp.qloop.(|0〉q〈0|M ′|0〉q〈0|) Theorem 5.4

= p ∗ wp.qloop.(|0〉q〈0|M |0〉q〈0|) Corollary 3.6

v p ∗ wp.qloop.I monotonicity of wp.qloop

= p ∗ T.

Dividing both sides by the positive number p, we arrive at the desired result. �

Theorem 5.8 If T is positive-definite, then for any quantum predicate M ∈ PH such that M̃q is
a wp-invariant of qloop, we have

M̃q v wp.qloop.(|0〉q〈0|M |0〉q〈0|).

Proof. From the assumption that T is positive-definite, for any wp-invariant M̃q of qloop there exists

a sufficiently small but positive p such that p ∗ M̃q v T . So M̃q v T from Lemma 5.7. Then the
result of this theorem holds by applying Theorem 5.4. �

Example 5.9 Suppose there is only one qubit q involved in qloop. Let T = α|1〉〈1| + |0〉〈0|. From
the fact that T is the least fixed point of the map

X → |1〉〈1|wp.S.X|1〉〈1|+ |0〉〈0|, (27)

we have

α|1〉〈1|+ |0〉〈0| = |1〉〈1|wp.S.(α|1〉〈1|+ |0〉〈0|)|1〉〈1|+ |0〉〈0|
= |1〉〈1|(α ∗ wp.S.|1〉〈1|+ wp.S.|0〉〈0|)|1〉〈1|+ |0〉〈0|
= (pα+ q)|1〉〈1|+ |0〉〈0|

where
p = 〈1|(wp.S.|1〉〈1|)|1〉, q = 〈1|(wp.S.|0〉〈0|)|1〉,

and
p+ q =

∑
k

〈1|wp.S.(|k〉〈k|)|1〉 = 〈1|wp.S.I|1〉 ≤ 〈1|I|1〉 = 1.

There are two cases we should consider.
Case 1. q = 0. Then we have α = 0 because T is the ‘least’ fixed point of Eq.(27). Thus T =

|0〉〈0|. Suppose now N v wp.qloop.N ′. By the monotonicity of wp.qloop, we have wp.qloop.N ′ v
T = |0〉〈0|, and so 〈1|wp.qloop.N ′|1〉 = 0. It follows that

wp.qloop.N ′ = |1〉〈1|wp.qloop.N ′|1〉〈1|+ |0〉〈0|N ′|0〉〈0| = 〈0|N ′|0〉|0〉〈0|.

Then we can derive N = λN |0〉〈0| for some λN ≤ 〈0|N ′|0〉 from the assumption N v wp.qloop.N ′.
Conversely, for any N = λN |0〉〈0| and N ′ such that λN ≤ 〈0|N ′|0〉, we can check easily that

N v wp.qloop.N ′. So we arrive at the conclusion that in the case of q = 0, for any quantum
predicates N and N ′, N v wp.qloop.N ′ if and only if N = λN |0〉〈0| for some 0 ≤ λN ≤ 〈0|N ′|0〉 ≤ 1.

Case 2. q > 0. Then from p+ q ≤ 1 we have p < 1. So

T =
q

1− p
|1〉〈1|+ |0〉〈0|,

16

and T is positive-definite. By a routine calculation, for any M =
∑1

i,j=0mij |i〉〈j| ∈ PH2 satisfying
m11 ≤ m11p+m00q we have

|1〉〈1|M |1〉〈1| = m11|1〉〈1|
v (m11p+m00q)|1〉〈1|
= |1〉〈1|wp.S.(m11|1〉〈1|+m00|0〉〈0|)|1〉〈1|
= |1〉〈1|wp.S.M̃q|1〉〈1|

So M is a wp-invariant of qloop. By Theorem 5.8 we know that M̃q v wp.qloop.(|0〉q〈0|M |0〉q〈0|),
i.e.

m00|0〉〈0|+m11|1〉〈1| v m00wp.qloop.|0〉〈0|.

6 Conclusion and further research

The notion of quantum predicate proposed by D’Hondt and Panangaden makes it possible to reason
about quantum programs in a direct way, compared with the previous proposals in the literature
where quantum programs are treated as special cases of probabilistic programs. In this paper,
this notion is used to analyze a simple language fragment describing the quantum part of a future
quantum computer in Knill’s architecture. We also extend proof rules to quantum programs with
the aim to help reasoning about the partial and the total correctness of quantum programs.

The work presented in this paper is merely a small step, based on D’Hondt and Panangaden,
toward a goal-directed programming methodology for quantum computation. There are still many
important problems which remain for further research. First, in classical deterministic [5] or prob-
abilistic [8, 9] programming language, nondeterminism is introduced to specify programs’ behavior
before a real implementation is constructed, with which stepwise development of programs from
specifications is possible. In quantum programming language, we believe that nondeterminism will
also play an equally important role. A kind of nondeterministic choice has been extended to qGCL
by Zuliani [26] to describe and reason about counterfactual computation and mixed-state systems.
The quantum programs considered by Zuliani, however, are actually probabilistic programs with
some quantum primitives such as initialization, evolution and finalization. As a consequence, the
nondeterministic choice is merely presented in the classical way. So a topic for further study is to
introduce nondeterminism to quantum programs in the framework of D’Hondt and Panangaden.

Second, recall that deterministic programs enjoy the important property of conjunctivity[5], that
is, for any standard predicates p and q,

wp.S.(p ∧ q)⇔ wp.S.p ∧ wp.S.q;

and probabilistic programs satisfy sub-conjunctivity[16, 14]:

wp.S.(α & β)W wp.S.α & wp.S.β

for probabilistic predicates α and β. With these properties, correctness assertions with post-
conditions described by the conjunctivity of several predicates can be checked separately for each
individual predicate. As pointed out behind Definition 4.4, however, the conjunction between quan-
tum predicates defined in this paper is not monotonic in general, and so similar properties do not
hold for quantum programs. As a result, the separating strategy does not apply for reasoning about
quantum programs in our setting. Whether or not there exists a notion of conjunction for quantum
predicates which have a similarly nice property deserves further research.

Finally, although the proof rule for total correctness presented in Theorem 5.4 has been proved
to be complete, it is not an inductive one in the sense that M̃q v wp.qloop.I occurs in the premise,
which is usually very hard to check. This limits the usefulness of this rule in practice. To find an
indeed inductive one, just as in classical settings, is a great challenge.

17

Acknowledgement

We thank the referees for their helpful comments and suggestions, which improved the presentation
and the quality of this paper. Especially, one of the referees strengthened Theorem 5.1 in an earlier
manuscript, with which a redundant assumption in Theorems 5.4 and 5.8 can be removed. This
makes theses proof rules more powerful in practice. The referee also suggested and gave a proof for
the completeness theorem for partial correctness presented in Theorem 5.3.

The authors also thank the colleagues in the Quantum Computation and Quantum Information
Research Group for useful discussion. This work was partly supported by the Natural Science
Foundation of China (Grant Nos. 60503001, 60321002, and 60305005), and by Tsinghua Basic
Research Foundation (Grant No. 052220204).

References

[1] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computation, page 50. ACM Press,
New York, 2001.

[2] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum programming.
European Physical Journal D, 25(2):181–200, 2003.

[3] M. Butler and P. Hartel. Reasoning about grover’s quantum search algorithm using probabilistic
wp. ACM Transactions on Programming Languages and Systems, 21(3):417–429, 1999.

[4] E. D’Hondt and P. Panangaden. Quantum weakest preconditions. In P. Selinger, editor, Pro-
ceedings of the 2nd Workshop on Quantum Programming Languages (QPL04), Turku Centre
for Computer Science, 2004. See also Mathematical Structures in Computer Science, 2006.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[6] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc. ACM STOC,
pages 212–219, 1996.

[7] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical Review
Letters, 78(2):325, 1997.

[8] C. Jones. Probabilistic nondeterminism. PhD thesis, Edinburgh University, NK, 1990. Mono-
graph ECS-LFCS-90-105.

[9] C. Jones and G. Plotkin. A probabilistic powerdomain of evalutions. In Proceeding of the
4th IEEE Annual Symposium on Logic in Computer Science, pages 186–195, Los Alamitos,
California, 1989.

[10] J. Kemeny and J. Snell. Finite Markov Chains. Springer-Verlag, 1983.

[11] E. H. Knill. Conventions for quantum pseudocode. LANL report LAUR-96-2724, 1996.

[12] K. Kraus. States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer,
Berlin, 1983.

[13] A. McIver and C. Morgan. Partial correctness for probabilistic demonic programs. Theoretical
Computer Science, 266:513–541, 2001.

[14] A. McIver and C. Morgan. Abstraction, refinement and proof for probabilistic systems. Springer-
Verlag, 2005.

18

[15] C. Morgan. Proof rules for probabilistic loops. Technical Report PRG-TR-25-95, 1995. Pro-
gramming Research Group, Oxford University.

[16] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM Transactions
on Programming Languages and Systems, 18(3):325–353, 1996.

[17] B. Ömer. A procedural formalism for quantum computing. Master thesis, Department of Theo-
retical Physics, Technical University of Vienna, 1998. http://tph.tuwien.ac.at/oemer/qcl.html.

[18] B. Ömer. Structured Quantum Programming. PhD thesis, Department of Theoretical Physics,
Technical University of Vienna, 2003.

[19] J. W. Sanders and P. Zuliani. Quantum programming. Mathematics of Program Construction,
1837:80–99, 2000.

[20] P. Selinger. A brief survey of quantum programming languages. Functional and Logic Program-
ming, 2998:1–6, 2004.

[21] P. Selinger. Towards a quantum programming language. Mathematical Structures in Computer
Science, 14(4):527–586, 2004.

[22] P. W. Shor. Algorithms for quantum computation: discrete log and factoring. In Proceedings
of the 35th IEEE FOCS, pages 124–134, 1994.

[23] A. van Tonder. Quantum computation, categorical semantics and linear logic, 2003.
arXiv:quant-ph/0312174.

[24] M. Ying and Y. Feng. Quantum loop programs. 2006. In preparation. See also
http://arxiv.org/abs/quant-ph/0605218.

[25] P. Zuliani. Quantum Programming. PhD thesis, Oxford University, 2001.

[26] P. Zuliani. Non-deterministic quantum programming. In Proc. QPL 2004, pages 179–195, 2004.

19

