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An Algebraic Language for Distributed Quantum
Computing

Mingsheng Ying and Yuan Feng

Abstract— A classical circuit can be represented by a circuit
graph or equivalently by a Boolean expression. The advantage
of a circuit graph is that it can help us to obtain an intuitive
understanding of the circuit under consideration, whereas the
advantage of a Boolean expression is that it is suited to various
algebraic manipulations. In the literature, however, quantum
circuits are mainly drawn as circuit graphs, and a formal
language for quantum circuits that has a function similar to that
of Boolean expressions for classical circuits is still missing. Cer-
tainly, quantum circuit graphs will become unmanageable when
complicated quantum computing problems are encountered, and
in particular when they have to be solved by employing the
distributed paradigm where complex quantum communication
networks are involved. In this paper, we design an algebraic
language for formally specifying quantum circuits in distributed
quantum computing. Using this language, quantum circuits can
be represented in a convenient and compact way, similar to the
way that we use Boolean expressions in dealing with classical
circuits. Moreover, some fundamental algebraic laws for quantum
circuits expressed in this language are established. These laws
form a basis of rigorously reasoning about distributed quantum
computing and quantum communication protocols.

Index Terms— Quantum computing, circuits, distributed sys-
tems

I. INTRODUCTION

The studies of distributed quantum computing have a history
of more than ten years, with the earliest suggestions traced back
to Grover [12] and Cleve and Buhrman [3] among others. Various
experiments toward physical implementation of distributed quan-
tum computing have been frequently reported in recent years [19].
Also, some computer scientists begun to design architecture of
distributed quantum hardware systems; for example [21]. The
current theoretical research on distributed quantum computing can
be roughly classified into two categories:
• find quantum algorithms for solving paradigmatic problems

from classical distributed computing. For example, it was
shown that no classical algorithms can solve exactly the
leader election problem in anonymous networks [18], but
Tani, Kobayashi and Matsumoto [20] and D’Hondt and
Panangaden [5] found a quantum algorithm that can solve it
for any network topology in polynomial communication/time
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complexity provided the involved parties are connected by
quantum communication links (more precisely, entangle-
ments).

• use the physical resources of two or more small capac-
ity quantum computers to simulate a large capacity quan-
tum computer. For example, Yimsiriwattana and Lomonaco
Jr. [26] presented a distributed implementation of Shor’s
quantum factoring algorithm; Cirac, Ekert, Huelga and
Macchiavello [2] examined the performance of distributed
quantum computing when quantum communication links
between the parties are noisy, using the phase estimation
problem as an illustrative example; van Meter, Nemoto and
Munro [22] analyzed the effect of various quantum error
correction codes and the influence of teleportation failure in
designing distributed quantum computing systems.

Up to now, most efforts have been devoted to the second topic
because practical quantum computers with large qubit capacity
are very difficult to build, and one possible way to overcome
this difficulty is to use the distributed paradigm in quantum
computing.

Quantum algorithms and protocols are usually expressed in the
form of quantum circuits, which are often drawn as circuit graphs
in the literature. Obviously, if a quantum algorithm or protocol
is very complicated, then its circuit graph would be too big to
be drawn and manipulated. The situation becomes even worse in
the case of distributed quantum computing where a large number
of parties are involved and many communication links among
them are present. Recall that in classical computing a circuit can
not only be drawn as a circuit graph but also be written as a
Boolean expression. Boolean expressions are much more suitable
for algebraic manipulations than circuit graphs. In particular,
simplification of circuits can be carried out conveniently in the
form of Boolean expressions. However, a language which has
a function in quantum computing analogous to that of Boolean
expressions in classical computing is still missing.

The purpose of this paper is to provide an algebraic language
which can express distributed (and sequential) quantum algo-
rithms and quantum communication protocols in a convenient and
compact way. We shall carefully define formal semantics of this
language. Some fundamental algebraic laws for quantum circuits
expressed in this language will be established. This will provide
us with convenient and solid mathematical techniques for rigorous
reasoning about distributed quantum computing.

This paper is organized as follows: For convenience of the
reader, we review some basic notions from quantum mechanics
and quantum computing in Section 2, where we also fix some
notation needed in the following sections. A single scheme of
primitive actions in quantum circuits is isolated and its compu-
tational behavior is carefully examined in Section 3. In Section
4, formal definitions of a quantum circuit and its domain and
codomain are presented. Then we define the notions of quantum
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resource and classical communication in a quantum circuit. In
particular, we introduce the notion of partition of subsystems in
order to describe distributed quantum computing. Section 5 is
devoted to establishing various useful algebraic laws for quan-
tum circuits. A normal form of quantum circuits with quantum
resources explicitly displayed before primitive actions is then
obtained by using these laws. In Section 6, we present some
examples to illustrate the expressive power of the formal language
developed in the present paper. We draw a brief conclusion and
point out some topics for further studies in Section 7. The proofs
of the main results are put into the appendix.

II. PRELIMINARIES AND NOTATION

A. Qubits

The basic data unit in a quantum computer is a qubit, which
can be physically realized by a two-level quantum-mechanical
system, e.g., the horizontal and vertical polarizations of a photon,
or the up and down spins of a single electron. Formally, the
state space of qubits is the 2−dimensional Hilbert space H2.
A qubit is represented by a unit vector in H2 of the form
|ψ〉 = α0|0〉+ α1|1〉, where |0〉 and |1〉 are two basis states, and
α0 and α1 are complex numbers with |α0|2 + |α1|2 = 1. More
generally, we can introduce the notion of multi-qubit which is
used in quantum computing as a register. To do this, we need
to fix a notation. In set theory, an ordinal number is defined to
be the set of all ordinal numbers smaller than it. We adopt this
idea in this paper; that is, we shall use n to denote the set of the
first n nonnegative integers, n = {0, 1, ..., n − 1}. In particular,
2 = {0, 1}. For any finite set I, a |I|−qubit may be indexed by I,
where |I| stands for the cardinality of I. An I−indexed |I|−qubit
will be simply called an I−qubit. The state space of I−qubits is
the tensor product H⊗I2 of I−indexed copies of H2 according
to a basic postulate of quantum mechanics. Thus, an I−qubit
is represented by a unit vector in H⊗I2 , which can be written
as |ψ〉 =

∑
t∈2I αt|t〉, where 2I is the power set of I, i.e. the

set of mappings from I into 2, and all αt are complex numbers
and they are called amplitudes. It is required that αt’s satisfy
the normalization condition

∑
t∈2I |αt|

2 = 1. We often use the
subscript I in |ψ〉I to indicate that |ψ〉 is in H⊗I2 . More precisely,
if |I| = n and I = {A0, A1, ..., An−1}, then for each t ∈ 2I , |t〉I
stands for |t0〉A0

|t1〉A1
...|tn−1〉An−1

, where ti = t(Ai) = 0 or 1

and the subscript Ai is used to indicate the fact that the bit |ti〉
belongs to the Ai−systems for all i = 0, 1, ..., n − 1. For any
|ψ〉 ∈ H⊗I2 , we define the domain of |ψ〉 to be dom(|ψ〉) = I.
The reason for introducing an abstract index set I is that one may
use other symbols rather than nonnegative integers to name qubits
in applications. We now turn to consider the special case where
I is an initial segment of nonnegative integers. First, we shall
identify H2 with H⊗12 . More generally, for any positive integer
n, each t ∈ 2n can be written as an n-bit string t(0)t(1)...t(n−1).
So, an n−qubit is a superposition of n−bits, and it can be written
in the following way:

|ψ〉 =
∑

t0,t1,...,tn−1∈{0,1}

αt0t1...tn−1 |t0t1...tn−1〉,

where {|t0t1...tn−1〉 : t0, t1, ..., tn−1 = 0 or 1} is the standard
orthonormal basis, called the computational basis, of H⊗n2 . Fur-
thermore, |ψ〉 can be conveniently represented by the complex
column vector (αt0t1...tn−1 : t0, t1, ..., tn−1 ∈ {0, 1})T of length

2n, where components αt0t1...tn−1 are arranged according to the
lexical ordering of t0t1...tn−1, and T stands for transpose. We can
also write |ψ〉 = (α0, α1, ..., α2n−1)T if we identify the integer
t02n−1 + t12n−2 + ... + tn−120 with its binary representation
t0t1...tn−1. (Here you see that treating n as the set of the first
n nonnegative integers enables a smooth transition between H⊗n2
and H⊗I2 ). The GHZ (Greenberger-Horne-Zeilinger) state |En〉 =
1√
2

(|0〉⊗n + |1〉⊗n) in H⊗n2 is frequently used in distributed
quantum computation, where we use |t〉⊗n to denote |tt...t〉 (n
t’s) for t = 0, 1. In particular, |E2〉 = 1√

2
|00〉+ |11〉 is called the

EPR (Einstein-Podolsky-Rosen) state. We shall simply write |E〉
for |E2〉. Using the vector notation of qubits, |En〉 can be written

as 1√
2

(1,

2n−2︷ ︸︸ ︷
0, ..., 0, 1)T , and |E〉 = 1√

2


1

0

0

1

 .

A convenient way of describing quantum systems whose states
are not completely known is to introduce the notion of ensem-
ble. We use the term ensemble when, roughly speaking, we
are holding some classical information that tells us which of
several possible quantum states the system is in. For example,
this approach is used for quantum error correction, where the
(classical) syndrome is paired with a quantum state, and the
goal is to choose repair operations based on the syndrome that
will coalesce the various ensemble members back to the desired
quantum state. In Subsection II-C, ensembles will be used to
describe outcomes of quantum measurements. An easy way of
formally manipulating ensembles is to treat them as multi-sets
which are generalizations of a set. A member of a multi-set can
have more than one membership, while each member of a set has
only one membership. We shall use {.} to denote sets and use {|.|}
to denote multi-sets. A multi-set E = {|(pi, |ψi〉) : i = 1, ..., n|}
is called an ensemble in H⊗I2 if 0 ≤ pi and |ψi〉 is a quantum
state in H⊗I2 for each i, and

∑n
i=1 pi = 1, where pi stands

for the probability that the system is in state |ψi〉. We write
s(E) = {|ψi〉 : i = 1, ..., n} for the set of quantum states occurring
in E . For each |ψ〉 ∈ s(E), put p(|ψ〉) =

∑
{|pi : |ψi〉 = |ψ〉, 1 ≤

i ≤ n|}. Then we shall not distinguish the ensemble E from
its reduction ensemble {(p(|ψ〉), |ψ〉) : |ψ〉 ∈ s(E)}, which is a
set. Furthermore, we shall not distinguish a pure state |ψ〉 from
the singleton ensemble {(1, |ψ〉)} in which the system is in state
|ψ〉 with probability 1. We say that the domain of E is I and
write dom(E) = I if E is an ensemble in H⊗I2 . We introduce
the empty ensemble in H⊗I2 , written ∅I , which is not really an
ensemble. This will allow us to define a so-called inactive circuit
in a convenient way. It is reasonable to identify ∅I with ∅J for
any two finite sets I and J . Thus, the subscript I of ∅I will always
be dropped.

B. Quantum Gates

A quantum gate acting on a quantum register consisting n

qubits is described by a 2n×2n unitary matrix, that is, a complex
matrix such that UU† is the identity matrix, where U† stands for
the Hermitian conjugate (or conjugate transpose) of U ; that is,
the (i, j)−entry of U† is the complex conjugate of (j, i)−entry
of U .

The evolution of quantum states is described by a quantum
gate. If |ψ〉 = (α0, α1, ..., α2n−1)T is a quantum state in H⊗n2 ,
and U is an n−qubit gate, then the outcome of performing U on
|ψ〉 is defined to be the quantum state in H⊗n2 represented by the
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vector U |ψ〉, where U |ψ〉 is given according to the usual matrix
multiplication.

We now give some examples of quantum gate. The Pauli

gates are single-qubit gates: X = NOT =

(
0 1

1 0

)
, Y =(

0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. Another useful single-qubit

gate is the Hadamard gate: H = 1√
2

(
1 1

1 −1

)
. Thus,

NOT |0〉 =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1〉,

NOT |1〉 = |0〉, Y |0〉 = i|1〉, Y |1〉 = −i|0〉, Z|0〉 = |0〉 and
Z|1〉 = −|1〉. Also, we have:

H|0〉 =
1√
2

(
1 1

1 −1

)(
1

0

)
=

1√
2

(
1

1

)
=

1√
2

(|0〉+ |1〉)

and H|1〉 = 1√
2

(|0〉 − |1〉). We shall need controlled gates in the
following sections. Let U be a k−qubit gate. Then Cn(U) is de-
fined to be an (n+k)−qubit gate, and with linearity it is uniquely
determined by its action on the computational basis of the
n−qubit subsystem and its action on the remaining k−qubit sub-
system, i.e. the following equation: C(n)(U)|t0t1...tn−1〉|ψ〉 =

|t0t1...tn−1〉U t0t1...tn−1 |ψ〉 for any t0, t1, ..., tn−1 ∈ {0, 1} and
|ψ〉 ∈ H⊗k2 . In the right-hand side of the above equation the
exponential t0t1...tn−1 of U means the product of t0, t1, ..., tn−1.
We shall simply write CNOT for C(1)(NOT ). For example,

CNOT |E〉 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 · 1√
2


1

0

0

1



=
1√
2


1

0

1

0

 =
1√
2

(|00〉+ |10〉).

Note that in the above example the input |E〉 is an entangled
state in the sense that it cannot be factored in the way of |E〉 =

|ψ1〉|ψ2〉 with |ψ1〉, |ψ2〉 ∈ H2. On the other hand, the output
is a product state because it can be written as 1√

2
(|0〉 + |1〉)|0〉.

So, CNOT transforms an entangled state |E〉 to a product state.
Conversely, it also transforms the product state 1√

2
(|00〉 + |10〉)

to the entangled state |E〉.
To define unitary transformation on H⊗I2 , we need to introduce

some notation. If h : I → J is a bijection, then it defines a linear
operator h : H⊗I2 → H⊗J2 by h(⊗i∈I |ψi〉i)

def
= ⊗i∈I |ψi〉h(i)

for all |ψi〉 ∈ H2, i ∈ I. Intuitively, h is a renaming function;
that is, it changes a qubit indexed by i to a qubit indexed by
h(i). Moreover, if E is an ensemble, then we write h(E) =

{|(p, h(|ψ〉)) : (p, |ψ〉) ∈ E|}. In particular, we have h(∅) = ∅.
For any mapping f : X → Y , we write dom(f) and ran(f) for
the domain and range of h, respectively; that is, dom(f) = X

and ran(f) = {f(x) : x ∈ X}. Suppose that U is an n−qubit
gate and h is a one-to-one mapping with dom(h) = n and
ran(h) = I. Then we can use U and h to define a unitary
transformation Uh on H⊗I2 . Intuitively, Uh acts on the I−qubits
according to the ordering of members in I given by h; i.e. the
h(k)−qubit is the (k + 1)th qubit to which U is applied for
all k ≤ n − 1. Formally, for any quantum state |ψ〉 ∈ H⊗I2 ,

Uh(|ψ〉) def
= h(U(h−1(|ψ〉))). The intuition behind the above

equation is as follows: U is a unitary operator on H⊗n2 and we
wish to apply it to a state |ψ〉 in H⊗I2 . So, we first map |ψ〉 to
a canonical form in H⊗n2 that allows us to apply U , and then
undo the mapping to restore the obtained state to the original
qubit locations. Alternatively, if U =

⊗n−1
k=0 Uk, where each Uk

is a single-qubit gate on the (k + 1)th qubit and
⊗

stands for
tensor product of matrices, and ti ∈ {0, 1} for all i ∈ I, then
Uh(

⊗
i∈I |ti〉i)

def
=
⊗
i∈I(Uh−1(i)|ti〉)i. In general, since the set

of product unitary operators forms a basis of the space of matrices,
U can be written in the following way:

U =
∑
l

αl(

n−1⊗
k=0

Ulk) (1)

where Ulk is a single-qubit gate acting on the (k+ 1)th qubit for
all l, k, and the above defining equation can be easily extended
to the general case by linearity.

C. Quantum Measurements

One of the most significant differences between classical and
quantum information comes from quantum measurement. In this
paper we only consider quantum measurement in the compu-
tational basis. Let |ψ〉 be a quantum state in H⊗I2 , and let
J ⊆ I. Then |ψ〉 can be written in the following way: |ψ〉 =∑
t∈2J αt|t〉J |ψt〉 where |ψt〉 is in H⊗(I\J)2 for each t ∈ 2J .

Obviously, {|t〉 : t ∈ 2J} is the computational basis of the state
space H⊗J2 of J−qubits, which forms a subsystem of I−qubits. If
the quantum measurement in the computational basis is performed
on the J−qubits, then we obtain the ensemble {|(|αt|2, |ψt〉)|}.
This means that the probability that the measurement outcome
is t is |αt|2, and the state of the remaining subsystem, the
(J \ I)−qubits, becomes |ψt〉 (and the whole system is in state
|t〉|ψt〉) immediately after the measurement if the measurement
outcome is t for any t ∈ 2J . As an example, we consider a
state of two qubits |ψ〉 = α00|00〉+α01|01〉+α10|10〉+α11|11〉.
If we perform a measurement in the computational basis on
the first qubit, then for i = 0, 1, the probability that we get
i is pi = |αi0|2 + |αi1|2, and the state of the second qubit
after the measurement is 1√

pi
(αi0|0〉 + αi1|1〉). If we perform

a measurement in the computational basis on the two qubits,
then the probability that the outcome of measurement is two-bit
classical information ij is pij = |αij |2, and the post-measurement
state of the two qubits is the basis state |ij〉, for any i, j = 0, 1.

It is well-known that quantum measurements in other bases
can be carried out by combining unitary transformation and
measurement in the computational basis.

D. Notation

In this subsection, we introduce some set-theoretic notation that
will be needed in what follows. Let X be a set, and let P = {Xt :

t ∈ T}, where T is a nonempty index set. If X ⊇
⋃
t∈T Xt, and

Xt ∩Xt′ = ∅ whenever t 6= t′, then P is called a partial partition
of X. In particular, if X =

⋃
t∈T Xt, then partial partition P is

called a partition of X. If f : X → Y and g : Y → Z are two
mappings, then we write f ◦ g for the composition of f and g;
that is, (f ◦ g)(x) = g(f(x)) for all x ∈ X. Let f : X → Y be a
mapping and Z ⊆ X. Then the restriction of f on Z is defined
to be the mapping f |Z : Z → Y such that (f |Z)(x) = f(x) for
all x ∈ Z. If X1 ∩X2 = ∅, and f1 : X1 → Y and f2 : X2 → Y
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are two mappings, then the merging of f1 and f2 is defined to
be the mapping f1 ∪ f2 : X1 ∪X2 → Y,

(f1 ∪ f2)(x) =

{
f1(x) if x ∈ X1,

f2(x) if x ∈ X2.

III. PRIMITIVE ACTIONS

Let N be a (finite or countably infinite) set of qubit names.
Usually, N will be taken as the set of nonnegative integers or
one of its subsets, e.g. an initial segment n = {0, 1, ..., n− 1} for
some n ≥ 0. Let G be a set of quantum gates. For each U ∈ G,
we write ar(U) for the arity of U , i.e. U : H⊗ar(U)

2 → H⊗ar(U)
2

is a unitary operator acting on ar(U)−qubits.
We choose to use a single scheme of primitive actions.
Definition 3.1: The primitive actions generated by G over N

are of the form:
M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

] (2)

where I ⊆ N , Ul ∈ G, fl is a computable function and hl :

{0, 1, ..., ar(Ul) − 1} → N is a one-to-one mapping for each
l ≤ k, and it is required that

I ∩
k⋃
l=1

ran(hl) = ∅. (3)

Their domain and codomain are defined by

dom(M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

]) = I ∪
k⋃
l=1

ran(hl),

codom(M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

]) =

k⋃
l=1

ran(hl).

Intuitively, we use the primitive action (2) to denote the
composed action consisting of the following three steps:
• Measurement. A measurement in the computational basis

is performed on the I−qubits, leaving the (N \ I)−qubits
unchanged;

• Classical communications. The outcome t ∈
{0, 1, ..., 2|I|−1} is then broadcast to the ran(h1)−qubits,...,
ran(hk)−qubits; and

• Unitary transformations. For each l ≤ k, fl(t) copies
of Ul are applied to the ran(hl)−qubits, where the
ran(hl)−qubits are arranged according to the ordering given
by hl, i.e. the hl(i)−qubit is the (i+ 1)th qubit to which Ul
is applied for all i ≤ ar(Ul)− 1.

Although a primitive action consists of three steps, it will
always be treated as a single entity.

The condition (3) means that the measurement on the I−qubits
destroyed the I−indexed subsystem, the subsystem stores classi-
cal information but not qubits, and thus the subsequent unitary
transformations are not allowed to act on it. Note that the ranges
of hl1 and hl2 are not required to be disjoint for different l1 and
l2. Thus, the ordering of U1, ..., Uk in the primitive action (2)
cannot be ignored. Of course, it will be shown in the sequel that
the positions of U1, ..., Uk can be exchanged when the ranges of
h1, ..., hk are pairwise disjoint.

It is worth noting that the classical information extracted by the
measurement is used in the unitary transformation step. It should
also be noted that classical computation is needed in this step in
order to compute the values fl(t). To simplify the presentation,
classical computational ability of each subsystem is assumed to be

unbounded, and thus classical computational complexity is always
ignored.

For any I ⊆ N , we often write I as a sequence of its elements.
Sometimes, the ordering of elements of I in this sequence is
unimportant. We write IdI for the identity operator on the
I−qubits. A one-to-one mapping h : {0, 1, ..., n − 1} → N is
often written as the sequence h(0), h(1), ..., h(n − 1). Note that
usually the ordering of members in ran(hl) determined by hl
in the primitive action (2) cannot be ignored because Ul is not
necessarily completely symmetric. For example, CNOT1,2 stands
for the controlled NOT gate with the first qubit as the control qubit
and the second qubit as the target qubit, but CNOT2,1 stands for
the controlled NOT gate where the second qubit is the control
qubit and the first qubit is the target qubit.

The motivation of taking a general scheme of primitive actions
is to guarantee that the model developed in this paper can be
used as widely as possible. In a concrete application, of course,
only a special (usually very small) class of primitive actions will
considered. Two special classes of primitive actions will be used
frequently in the sequel:
• If I = ∅, then the primitive action (2) becomes a sequence

of unitary transformations, without any measurement. In
particular, if k = 1, U1 = U and f1(t) = 1, then the primitive
action (2) is exactly the unitary operator U acting on
ran(h1), and we shall simple write Uh(0),h(1),...,h(ar(U)−1)
for this action.

• If k = 0, then the function of the primitive action (2) is to
trace out the I−qubits; that is, we perform a measurement (in
the computational basis) on the I−qubits, but the outcome of
measurement is ignored. (Since k = 0, we have nowhere to
use the classical information gained by the measurement.) In
this case, we shall simply write MI for the primitive action.

Now we formally define how a primitive action is applied to
a quantum state. To this end, we need to introduce an auxiliary
notation for ensembles. For any finite subsets I, J of N with
I ∩ J = ∅, an I−indexed ensemble in H⊗J2 is of the form

{|(pt, |ψt〉) : t ∈ 2I |}, (4)

where |ψt〉 ∈ H⊗J2 is a pure state for each t. We often use t ∈ 2I

as the binary representation of a nonnegative integer smaller than
2|I|, i.e. t = t(i0)2|I|−1 + t(i1)2|I|−2...+ t(i|I|−1)20 whenever I
is written as i0, i1, ..., i|I|−1 (and thus |t〉 = |t(i0)t(i1)...t(i|I|−1)〉
is a computational basis state of the I−qubits). The aim of
introducing such a notation is to provide a convenient way of
representing quantum measurement in the computational basis.
We consider a quantum system consisting of I ∪ J−indexed
qubits, where I ∩ J = ∅. If a measurement is performed on the
I−indexed subsystem, then the outcome will be an I−indexed
ensemble in H⊗J2 . In this way, the post-measurement state of the
measured subsystem (i.e. the I−qubits) is discarded, although the
classical information about it is indeed (implicitly) recorded in the
ensemble. Discarding the J−subsystem allows us to considerably
simplify the presentation, but it is still there as a physical system
and can be reused later, sometimes after renaming. Note that
in the notation (4), only the probabilities and the states after
measurements are explicitly displayed, and the corresponding
measurement outcomes (the classical information extracted by
the measurement) t are implicitly encoded in the subscripts
of its components (pt, |ψt〉). To explicitly express the classical
information obtained in the measurement, we can simply add t
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into the 2−tuple (pt, |ψt〉) so that is is enlarged to the 3−tuple
(t, pt, |ψt〉). In this paper, however, we choose to use the simpler
notation (4) since it is good enough for our purpose.

Suppose that J is a finite set satisfying

I ∪
k⋃
l=1

ran(hl) ⊆ J ⊆ N . (5)

For any pure state |ψ〉 ∈ H⊗J2 , if |ψ〉 =
∑
t∈2I αt|t〉I |ψ̃t〉, where

|ψ̃t〉 ∈ H⊗(J\I)2 is a pure state for each t, then

M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

](|ψ〉) (6)

is defined to be the I−indexed ensemble {|(|αt|2, |ϕt〉) : t ∈ 2I |}
in H⊗(J\I)2 , where |ϕt〉

def
= Vk(t)...V1(t)|ψ̃t〉, and Vl(t)

def
=

U
fl(t)
lhl

⊗ IdJ\I\ran(hl) for each t ∈ 2I and l ≤ k. In the

above defining equation, Ufl(t)lhl
stands for the composition of

fl(t) copies of Ul acting on ran(hl), and ran(hl)−qubits are
ordered according to hl. More precisely, we choose an arbitrary
bijection h′l : {ar(Ul), ar(Ul) + 1, ..., |J \ I|} → J \ I \ ran(hl).

Then gl
def
= hl ∪h′l : |J \ I| → J \ I is a bijection, and we define:

Vl(t)(|ϕ〉)
def
= gl((U

fl(t)
l ⊗ Id|J\I\ran(hl)|)g

−1
l (|ϕ〉))

for any |ϕ〉 in H⊗(J\I)2 , where Id|J\I\ran(hl)| is the identity
operator on the |J \ I \ ran(hl)|−qubits, and |J \ I \ ran(hl)|
is a nonnegative integer and treated as the set of all nonnegative
integers smaller than it. In the definition of Eq. (6), we keep track
of all the measurement outcomes throughout the computation.
This is because the behavior of a distributed quantum computing
system is usually analyzed in such a way in the existing literature.
But the problem is that the obtained ensemble could be very large.
So, we often need to consider the reduction of an ensemble to
minimize its size in applications.

From Eq. (5), it can be seen that the domain J of the
quantum state |ψ〉 in (6) may be truly larger than the domain
I ∪
⋃k
l=1 ran(hl) of the primitive action in (6) and thus the (J \

I ∪
⋃k
l=1 ran(hl))−indexed subsystem of |ψ〉 is left unchanged.

If we consider the primitive action in (6) independently from its
environment, it is reasonable to define (6) only for the quantum
states with the same domain as the primitive action. However, a
primitive action is always connected to/by other primitive actions
whose domains may be different to form a big quantum circuit.
To examine the computational behavior of such a circuit, it is
necessary to define the effect of this primitive action on quantum
states which contains some qubits occurring not in the domain of
this action but in the domains of the other actions.

A primitive action may include a destructive measurement in
the sense that some qubits are discarded after the measurement.
So, it is reasonable to also include the possibility of adding new
qubits. A common snapshot of distributed quantum computing
is: a local party prepares a set of ancilla qubits, has them
interacting with some other qubits, measures the ancilla qubits,
and broadcasts the outcome; then certain unitary transformations
are performed, conditioned on the measurement outcome. At the
next step, some new ancillas are prepared (or some old ones are
reset). Except the preparation of ancilla qubits, the above picture
is exactly what a primitive action describes. However, a single
primitive action cannot depict the mechanism of adding new
qubits. It will be implicitly realized by concatenation of circuits
defined below.

To illustrate the above definition, we consider a simple exam-
ple. Let

|ψ〉 =
1√
2
|011〉+

1

2
|101〉+

1

2
|110〉. (7)

Then

M t
1[Ht

0, CNOT
1−t
2,0 ](|ψ〉0,1,2)

= {(1

4
, |01〉), (3

4
,

1√
6
|00〉+

1√
3
|01〉 − 1√

6
|10〉+

1√
3
|11〉)},

and it is an ensemble in H⊗{0,2}2 (the subscripts 0, 2 of the basis
states |ij〉, (i, j = 0, 1) are omitted in the above equation).

The performance of primitive actions on pure states can be
generalized to the case of ensembles in a natural way. Assume
that J and K are finite subsets of N and J ∩ K = ∅. Let E =

{|(pt, |ψt〉) : t ∈ 2J |} be a J−indexed ensemble in H⊗K2 . If
I ∪

⋃k
l=1 ran(hl) ⊆ K, and for each t ∈ 2J , the outcome of the

primitive action in (6) performing on |ψt〉 is already defined, say,

M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

](|ψt〉) = {|(pt,s, |ψt,s〉) : s ∈ 2I |},

then

M t
I [U

f1(t)
1h1

, ..., U
fk(t)
kkk

](E)
def
= {|(qr, |ϕr〉) : r ∈ 2J∪I |}, (8)

where qr = pr|J · pr|J,r|I , ϕr = |ψr|J,r|I〉, and r|I, r|J are
the restrictions of r on I and J , respectively, for each r. It is
a J ∪ I−indexed ensemble in H(K\I)

2 . In particular, we define:

M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

](∅) def= ∅.
As an example, let E = {( 13 , |ψ〉0,1,2), ( 23 , |E3〉0,1,2)}, where

|ψ〉 is given by Eq. (7). Then

M t
1[Ht

0, CNOT
1−t
2,0 ](E)

= {(1

3
, |00〉), ( 1

12
, |01〉), (1

3
,

1√
2

(|01〉+ |11〉)),

(
1

4
,

1√
6
|00〉+

1√
3
|01〉 − 1√

6
|10〉+

1√
3
|11〉)}

is an ensemble in H⊗{0,2}2 .

IV. CIRCUITS

In this paper, both centralized quantum computing and dis-
tributed quantum computing will be represented by quantum
circuits. The difference between centralized quantum computing
and distributed quantum computing is that a circuit for the former
is always treated as a single system, whereas a circuit for the
latter is usually divided into several subsystems, connected by
classical or quantum communication links (see Subsection IV-C
below). Intuitively, a circuit consists of a set of primitive actions,
connected by quantum wires that carry qubits, together with cer-
tain quantum resources provided a priori (usually entanglements
between some parties as quantum communication links). A circuit
C will be used to express a computation of which the inputs
are dom(C)−qubits, and the outputs are codom(C)−qubits, where
dom(C) and codom(C) stands for the domain and codomain of
C, respectively. Formally, we have:

Definition 4.1: Quantum circuits generated by G over N and
their domains and codomains are recursively defined as follows:
• For any finite subsets I and J of N , 0I,J is a circuit,

called inactive circuit from I to J , and dom(0I,J ) = I and
codom(0I,J ) = J.
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Fig. 1. Circuit composed with physical resource

• If A is a primitive action generated by G over N , then A

is a circuit, and dom(A) and codom(A) are defined as in
Definition 3.1.

• If C is a circuit, and |ψ〉 is a quantum state, then C|ψ〉 is also
a circuit, and

dom(C|ψ〉) = dom(C) \ dom(|ψ〉),
codom(C|ψ〉) = codom(C) ∪ [dom(|ψ〉) \ dom(C)].

• If C is a circuit, and θ : N → N is a bijection, called a
renaming function, then C[θ] is a circuit, and

dom(C[θ]) = θ(dom(C)),
codom(C[θ]) = θ(codom(C)).

• If C1 and C2 are circuits, and

[dom(C1) \ codom(C1)] ∩ dom(C2) = ∅, (9)

then the concatenation (or sequential composition) C1 V C2
of C1 and C2 is a also circuit, and

dom(C1 V C2) = dom(C1) ∪ [dom(C2) \ codom(C1)],

codom(C1 V C2) = codom(C2) ∪ [codom(C1) \ dom(C2)].
We shall use 0I,J to denote the action that aborts or a

computing device that outputs nothing no matter what the input
is. The reason of introducing the notion of inactive circuit is
mainly technical. Indeed, it enables us to considerably simplify
our presentation (see Proposition 5.2.2 below for example). The
function of a primitive action was already explained in the last
section. The circuit C|ψ〉 deserves a careful explanation. At the
first glance, it seems unreasonable to treat C|ψ〉 as a circuit
because it is a circuit C plus a quantum state |ψ〉, which may
specify the input to the circuit C completely, partially, or not at
all. However, our design decision is that in C|ψ〉, both C and
|ψ〉 are seen as physical devices. The quantum state |ψ〉 is a
physical resource and it is provided at the beginning. It is not
seen as an input to the circuit C although C will be applied to it
in a computation. The reason is that |ψ〉 is fixed in C|ψ〉, but an
arbitrary state can be an input to a circuit provided its domain
is consistent with that of the circuit. This point clearly explains
the defining equation of dom(C|ψ〉), where the domain of |ψ〉,
which is the set of qubit names included in |ψ〉, is removed
from the domain of the circuit C|ψ〉 composed of C and |ψ〉.
In contrast, |ψ〉 contributes to the codomain of the circuit C|ψ〉.
Suppose that in a computational step an input |ϕ〉 is fed into the
circuit C|ψ〉. Then the circuit C is applied to both |ϕ〉 and the
part of |ψ〉 in H⊗dom(C)

2 and produces an output, say, |ϕ′〉 whose
domain is equal to codom(C). However, the part of |ψ〉 not in
H⊗dom(C)

2 , written |ψ′〉, is left unchanged and can be used in the
later computational steps. So, it is reasonable to conceive that the
output of the whole circuit C|ψ〉 is |ϕ′〉 together with |ψ′〉, and

dom(|ψ〉) \ dom(C) should be collected in the codomain of C|ψ〉.
This can be illustrated even more clearly by Fig. 1. Obviously,
C1 V C2 is the concatenation (or sequential composition) of C1
and C2. The reason for choosing the notation “V” is that in
C1 V C2, the direction of the arrow indicates the time flow
from C1 to C2, and the three bars means that there are some
wires connecting C1 and C2. It should be noted that we do not
require codom(C1) ⊆ dom(C2). Indeed, it is even allowed that
codom(C1)∩dom(C2) = ∅. This is exactly the reason that circuits
can be used to describe not only centralized quantum computing
but also distributed quantum computing. It also provides us with
the mechanism of introducing new qubits. The condition given
in Eq. (9) indicates that if a qubit name is consumed in a
computational step, i.e. a quantum measurement is performed on
it, then it cannot be used in the later steps. This seems a serious
objection, but it can be easily remedied by renaming.

For simplicity, we often drop the subscripts I, J of 0I,J when
they may be determined by the context or they are irrelevant. It
should be pointed out that dom(|ψ〉) in the second clause of the
above definition is allowed to be empty. In this case, |ψ〉 will
be dropped in C|ψ〉. If n1, ..., nk ∈ N and θ(n) = n for all
n ∈ N \ {n1, ..., nk}, then we write:

C[θ(n1)/n1, ..., θ(nk)/nk] (10)

for C[θ]. Also, we shall write C[θ(n)/n : n ∈ M] for C[θ] if
M⊂ N and θ(n) = n for all n ∈ N \M.

The qubit names in the domain and codomain of a circuit can
be seen from outside, and they are the ports that the circuit will
use to establish connections with its environment. Sometimes, we
need to consider all qubit names involved in a circuit, not only
those in its domain and codomain. To this end, we introduce the
notion of the universe of a circuit.

Definition 4.2: The universe D(C) of circuit C is recursively
defined as follows:
• D(0I,J ) = I ∪ J ;
• D(M t

I [U
f1(t)
1h1

, ..., U
fk(t)
khk

]) = I ∪
⋃k
l=1 ran(hl);

• D(C|ψ〉) = D(C) ∪ dom(|ψ〉);
• D(C[θ]) = θ(D(C));
• D(C1 V C2) = D(C1) ∪D(C2).
It is obvious that dom(C), codom(C) ⊆ D(C). However, it is

possible that dom(C) ∪ codom(C) 6= D(C) because some qubits
names in D(C) \ dom(C)∪ codom(C) may be consumed in C and
they cannot be seen from outside; in particular, some qubits in the
dom(C′)∩dom(|ψ〉)−system may be destroyed by measurements
when C = C′|ψ〉.

Examples of circuits will be presented in Section VI. Now
we turn to characterize computational behavior of a circuit. Each
circuit C defines a mapping from ensembles to ensembles. To
present a formal definition of such a mapping, we need an
auxiliary notation. Assume that I, J are finite subsets of N
and I ∩ J = ∅. If E is an ensemble in H⊗I2 and F is an
ensemble in H⊗J2 , then their tensor product is defined to be
E ⊗ F = {|(pq, |ϕ〉|ψ〉) : (p, |ϕ〉) ∈ E and (q, |ψ〉) ∈ F|}.
Obviously, it is an ensemble in H⊗(I∪J)2 . In particular, if E is
an ensemble in H⊗I2 and |ψ〉 is a pure state in H⊗J2 , then we
write E ⊗ |ψ〉 = {|(p, |ϕ〉|ψ〉) : (p, |ϕ〉) ∈ E)|}.

Definition 4.3: Let C be a circuit and E an ensemble with
dom(C) ⊆ dom(E). Then the computational outcome C(E) of
C on input E is defined recursively as follows:

• If C = 0, then C(E)
def
= ∅.
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• If C is a primitive action, then C(E) is defined by Eq. (8).
• If C = C′|ψ〉, then C(E)

def
= ∅ when dom(E)∩dom(|ψ〉) 6= ∅,

and C(E)
def
= C′(E ⊗ |ψ〉) when dom(E) ∩ dom(|ψ〉) = ∅.

• If C = C′[θ], then C(E)
def
= θ(C′(θ−1(E))).

• If C = C1 V C2, then C(E)
def
= C2(C1(E)).

The equation C(E) = F will be often visualized by the
transition E C→ F . It is worth noting that the domain of an input
to a circuit is not necessarily equal to the domain of the circuit,
and the former is allowed to be bigger than the latter. One of the
reasons for this design decision is that a circuit is often embedded
into a bigger system. On the other hand, this design decision
allows us to define the effect of two connected circuits C1 V C2
in a very convenient way. One thing in the above definition
deserving an explanation is the first part of the third clause.
Clearly, the only reasonable way of defining (C′|ψ〉)(E) is to put
(C′|ψ〉)(E) = C′(E ⊗|ψ〉). In the case of dom(E)∩dom(|ψ〉) 6= ∅,
however, a conflict arises in the domains of the existing resource
|ψ〉 and the input E . The tensor product E⊗|ψ〉 is not well-defined,
and the computation C′|ψ〉(E) is then blocked.

The next lemma gives some basic properties of computation by
a circuit. The first part shows that the computation of a circuit on
an ensemble may be simply carried out by the computations on
the pure states in the ensemble. The second part implies that the
empty computational result of a circuit does not come from the
input. Indeed, it is produced by certain inactive components of
the circuit. The third part indicates that a circuit cannot generate
entanglement with qubits outside its universe, and it also shows
that the part of an input not in the universe of a circuit is left
unchanged in the computational process described by the circuit.

Lemma 4.1: 1) Let E = {|(pt, |ψt〉) : t ∈ T |}. If C(|ψt〉) =

{|(qt,s, |ϕt,s〉) : s ∈ St|} for each t ∈ T, then C(E) =

{|(pt · qt,s, |ϕt,s〉) : t ∈ T, s ∈ St|}.
2) If E 6= ∅ and C(E) = ∅, then C(E ′) = ∅ for any ensemble
E ′ with dom(E ′) = dom(E).

3) If dom(E) ∩ dom(F) = ∅ and dom(F) ∩ D(C) = ∅, then
C(E ⊗ F) = C(E)⊗F .

Proof. It is routine by induction on the length of C. �
The following proposition presents a way to figure out the

domain of the output of a circuit from the domain and codomain
of the circuit and the domain of the input.

Proposition 4.1: Let C be a circuit and E an ensemble. If
C(E) 6= ∅, then we have:

dom(C(E)) = codom(C) ∪ [dom(E) \ dom(C)]. (11)
Proof. It is quite involved, and we put it into the appendix. �
A potential application of the above proposition would be to

give a type system for quantum computing. A type system of a
programming language defines the way that the values and ex-
pressions are classified into types and the way that those types are
manipulated. Type systems have been successfully applied in pro-
gramming for classical computers, including safety improvement,
optimization, documentation and abstraction. Proposition 4.1 can
be used to develop a type checking algorithm for distributed
quantum computing.

A. Equivalence of Circuits

It is possible that the constructions of two circuits are signif-
icantly different but their computational abilities are the same.
Two circuits of the same computational ability are defined to be
equivalent. We first consider the inputs with a fixed domain.

Definition 4.4: Let C1 and C2 be two circuits, and let I be a
finite subset of N such that dom(C1), dom(C2) ⊆ I. Then C1 and
C2 are said to be I−equivalent, written C1 =I C2, if C1(|ψ〉) =

C2(|ψ〉) for all pure states |ψ〉 in H⊗I2 .
The above definition of equivalence was presented based on

inputs of pure states. The next lemma shows that it can also be
given with inputs of ensembles.

Lemma 4.2: If C1 =I C2, then C1(E) = C2(E) for all ensembles
E with dom(E) = I.

Proof. Immediate from Lemma 4.1. �
A stronger equivalence between circuits is given by the next

definition. The difference between it and Definition 4.4 is that in
the later the set I of qubit names is fixed, but in the former I is
allowed to be any set of qubit names bigger than the domains of
the circuits under consideration.

Definition 4.5: Two circuits C1 and C2 are said to be equivalent,
written C1 = C2, if

1) dom(C1) = dom(C2);

2) C1 =I C2 for all I ⊇ dom(C1).

One may guess that Clause 2 in the above definition can be
weakened as C1 =dom(C1) C2. But the following trivial example
indicates that it is not the case.

Example 4.1: Let C1 = X1 and C2 = (X1 V M2)|0〉2.
Then dom(C1) = dom(C2) = {1}, and it is easy to see that
C1|ψ〉1 = C2|ψ〉1 for all qubits |ψ〉. However, C1|00〉12 =

(X|0〉1)|0〉2, C2|00〉12 = ∅, and thus C1 6= C2.

B. Entanglement Resources and Classical Communications

We are often concerned with the amount of entanglement
resource consumed and the amount of classical communication
needed in distributed quantum computing. Their formal defini-
tions can be easily given by induction on the length of a circuit.

Definition 4.6: The entanglement resources eres(C) consumed
in C is a multi-set of quantum states, and it is recursively defined
as follows:
• eres(0) = ∅;
• eres(C) = ∅ if C is a primitive action;
• eres(C|ψ〉) = eres(C) ∪ {||ψ〉|};
• eres(C[θ]) = θ(eres(C));
• eres(C1 V C2) = eres(C1) ∪ eres(C2).
We use the term ebit to mean a maximally entangled two-

qubit state. Thus, we say that the circuit C uses
∑m
i=1 ki ebits if

eres(C) = {||ψ1〉, ..., |ψm〉|}, and |ψi〉 is the tensor product of ki
copies of a maximally entangled two-qubit state for all i ≤ m.

Definition 4.7: The number cbit(C) of classical communication
bits in circuit C is recursively defined as follows:
• cbit(0) = 0;
• cbit(M t

I [U
f1(t)
1h1

, ..., U
fk(t)
khk

]) = k · |I|;
• cbit(C|ψ〉) = cbit(C);
• cbit(C[θ]) = cbit(C);
• cbit(C1 V C2) = cbit(C1) + cbit(C2).
We often say that C uses cbit(C) cbits.

C. Partitions of Subsystems

To describe how a distributed quantum computing system is
divided into several subsystems, we introduce the following:

Definition 4.8: Let P = {Nt : t ∈ T} be a partition of N .
• 0 always respects P;
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• M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

] respects P whenever I ⊆ Nt0 for
some t0 ∈ T , and for each j ≤ k, ran(hj) ⊆ Ntj for some
tj ∈ T ;

• C|ψ〉 respects P if C respects P;
• C[θ] respects P if C respects θ−1(P) = {θ−1(Nt) : t ∈ T};
• C1 V C2 respects P if both C1 and C2 respect P .
Let C be a circuit and P = {Nt : t ∈ T} a partial partition of

D(C). We often simply say that C respects P when C respects the
partition P ∪ {N \D(C)}. Let M1 and M2 be two sets of qubit
names. If C respects P = {Nt : t ∈ T}, and Mi ⊆ Nti (i = 1, 2)

for different t1, t2 ∈ T , then we say that C separates M1 from
M2.

We see from the above definition that in distributed quantum
computation both quantum measurements and unitary transfor-
mations can only be performed on local subsystems. Classical
information extracted by a measurement on one subsystem can
be passed to other subsystems. Also, entanglement resources
are allowed to reside between different subsystems, and thus to
connect them. In other words, many subsystems can share a single
quantum resource in a distributed system.

When two circuits C1 and C2 are considered as distributed
computing systems, the equivalence C1 =I C2 introduced in
Definition 4.4 is no longer suitable because in a distributed system
it is reasonable to require that the inputs of the subsystems
participating the computation are independent to each other, but
the state |ψ〉 in Definition 4.4 is the input of the whole system
and it may be entangled with respect to these subsystems. So, we
introduce the following:

Definition 4.9: Let C1, C1 and I be as in Definition 4.4, and let
P be a partial partition of N . Suppose that both C1 and C2 respect
P , and {I∩Nt : t ∈ T and I∩Nt 6= ∅} = {I1, ..., Im}. If for any
|ψi〉 ∈ H⊗Ii2 (i = 1, ...,m), C1(

⊗m
i=1 |ψi〉) = C2(

⊗m
i=1 |ψi〉),

then C1 and C2 are said to be (P, I)−equivalent, and we write
C1 =P,I C2.

Let P = {Nt : t ∈ T} and P ′ = {N ′t′ : t′ ∈ T ′} be two
partial partitions of N . Obviously, if P is a refinement of P ′
with respect to I; that is, for each t ∈ T , there exists t′ ∈ T ′ such
that Nt ∩ I ⊆ N ′t′ ∩ I, then C1 =P′,I C2 implies C1 =P,I C2. In
particular, C1 =I C2 implies C1 =P,I C2 for all P . Conversely,
C1 =P,I C2 is equivalent to C1 =I C2 when I ⊆ Nt for some
t ∈ T , but it is not the case in general. It is interesting to note
that C1 =I C2 and C1 =P,I C2 always coincide in the setting
of classical computing where entanglement does not exist. So,
the difference between the two equivalences is an important fact
that distinguishes quantum computing from classical computing.
However, such a difference has been treated carelessly in some
physical literature; for example, a quantum circuit was presented
in Figure 1 of [7] to show that one bit of classical communication
in each direction and one shared ebit is necessary and sufficient
for the non-local implementation of a CNOT gate ([7], Theorem
1). We write NLC for this circuit and put I = {A,B} and P =

{{A}, {B}}. In the sufficiency part of the proof of Theorem 1
in [7], it was asserted that NLC =I CNOT [1/A, 2/B], but in
fact only a weaker conclusion, NLC =P,I CNOT [1/A, 2/B],
was verified. A formal language such as the one proposed in the
current paper may help us to avoid such a careless reasoning.

V. BASIC ALGEBRAIC LAWS FOR CIRCUITS

The basic properties of circuits are collected in the following
two propositions. We first need to introduce an auxiliary notation.

Let U ∈ G with ar(U) = n, and let σ be a permutation of
0, 1, ..., n−1, i.e. a bijection from n = {0, 1, ..., n−1} onto itself.
If U =

⊗n−1
k=0 Uk, where each Uk is a single-qubit gate acting on

the kth qubit, then σ(U)
def
=
⊗n−1
k=0 Uσ(k). More precisely,

σ(U)

n−1⊗
k=0

|bk〉
def
=

n−1⊗
k=0

(Uσ(k)|bk〉)k

for any bk ∈ {0, 1}, k = 0, 1, ..., n − 1. By linearity the above
defining equation can be easily extended to the general case
represented by Eq. (1).

The next proposition gives some basic properties of a primitive
action or two connected primitive actions.

Proposition 5.1: 1) Two sequential unitary transformations
can be combined: Uh V Vh = (V U)h.

2) Two independent unitary transformations can be merged: if
ran(h)∩ ran(g) = ∅, then Uh V Vg = (U ⊗V )h⊕g, where

(h⊕ g)(k) =


h(k) if k ≤ ar(U)− 1,

g(k − ar(U)) if
ar(U) ≤ k ≤
ar(U) + ar(V )− 1.

In this case, Uh and Vg commutes, i.e. Uh V Vg = Vg V
Uh, up to a renaming of qubits.

3) Changing operands of unitary transformations in primitive
actions:

M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

]

= M t
I [(g1 ◦ h−11 )(U1)

f1(t)
g1 , ..., (gk ◦ h−1k )(Uk)

fk(t)
gk ].

4) Commutativity of independent unitary transformations in
primitive actions: if l ≤ k−1 and ran(hl)∩ran(hl+1) = ∅,
then

M t
I [U

f1(t)
1h1

, ..., U
fl(t)
lhl

, U
fl+1(t)
(l+1)hl+1

, ..., U
fk(t)
khk

]

= M t
I [U

f1(t)
1h1

, ..., U
fl+1(t)
(l+1)hl+1

, U
fl(t)
lhl

, ..., U
fk(t)
khk

].

5) Two independent sequential measurements can be com-
bined: if I ∩ J = I ∩ ran(gn) = ran(hl) ∩ J = ∅ for
all l ≤ k and n ≤ m, then

M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

]VMu
J [V

g1(u)
1d1

, ..., V
gm(u)
mdm

]

= Mv
I∪J [U

f1(v|I)
1h1

, ..., U
fk(v|I)
khk

, V
g1(v|J)
1d1

, ..., V
gn(v|J)
mdm

].

6) Renaming in primitive actions:

M t
I [U

f1(t)
1h1

, ..., U
fk(t)
khk

][θ]

= M t
θ(I)[U

f1(t)
1(h1◦θ), ..., U

fk(t)
k(hk◦θ)].

Proof. See the appendix. �
The following proposition presents some structural properties

of circuits.
Proposition 5.2: 1) Inactive law: 0|ψ〉 = 0, 0[θ] = 0,

0 V C = 0, and C V 0 = 0. Here the notation is over-
loading. To simplify the presentation, we ignore the domain
and codomain of 0 which may be different in these four
equalities.

2) Putting resources together: if dom(|ψ1〉) ∩ dom(|ψ2〉) 6= ∅
then (C|ψ1〉)|ψ2〉 = 0, and if dom(|ψ1〉) ∩ dom(|ψ2〉) = ∅
then (C|ψ1〉)|ψ2〉 = C(|ψ1〉 ⊗ |ψ2〉).

3) Renaming laws:
a) C[idN ] = C, where idN is the identity mapping from
N onto itself.
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b) C[θ] = C[θ′] if θ(dom(C)) = θ′(dom(C)),
θ(codom(C)) = θ′(codom(C)), and θ and θ′ coincide
in θ(dom(C)) \ θ(codom(C)).

c) C[θ][θ′] = C[θ ◦ θ′].
4) Commutativity for independent circuits: if D(C1)∩D(C2) =

∅, then we have C1 V C2 = C2 V C1.
5) Associativity: (C1 V C2)V C3 = C1 V (C2 V C3).

6) Distributivity of renaming over concatenation: (C1 V
C2)[θ] = C1[θ]V C2[θ].

7) Distributivity of renaming over resource: C|ψ〉[θ] =

C[θ]θ(|ψ〉), and C[θ]|ψ〉 = Cθ−1(|ψ〉)[θ].
8) Moving resource through concatenation: (C1 V C2)|ψ〉 =

C1|ψ〉 V C2, and if D(C1) ∩ dom(|ψ〉) = ∅ then (C1 V
C2)|ψ〉 = C1 V C2|ψ〉.

9) Congruence laws: if C1 = C2, then we have:
a) C1|ψ〉 = C2|ψ〉;
b) C1[θ] = C2[θ]; and
c) C1 V C = C2 V C and C V C1 = C V C2.

Proof. See the appendix. �
The first part of Clause 2) in the above proposition looks a little

bit strange. At the first glance, one may wonder why should the
effect of a circuit in which two subsystems share some qubits be
a null program; in particular, it is common in a quantum circuit
that two subsystems are entangled through some middle qubits.
In fact, here the condition of dom(|ψ1〉)∩ dom(|ψ2〉) 6= ∅ means
that there is a conflict of qubit names in circuit (C|ψ1〉)|ψ2〉 (see
the paragraphs after Definitions 4.1 and 4.3), and we want to
express the idea that conflicts of qubit names would create illegal
circuits. An alternative way to do this is to exclude such a case
in the step of defining quantum circuits by adding the condition
of dom(C) ∩ dom(|ψ〉) = ∅ in the third clause of Definition 4.1.
However, it would make the presentation much more complicated;
e.g. the induction proof of Proposition 4.1.

The Clause 5 of Proposition 5.2 asserts that the sequential
compositionV enjoys associativity. So, we can write C1 V C2 V
...V Cn without ambiguity. Furthermore, we shall write

∏n
i=1 Ci

as an abbreviation of C1 V C2 V ...V Cn.

A. Normal Forms

We now introduce a normal form of circuit in which all
resources are put at the beginnings of primitive actions.

Definition 5.1: A normal form of circuit is defined to be a
circuit of the form A1|ψ1〉 V A2|ψ2〉 V ... V An|ψn〉, where
all Ai are primitive actions.

Let Φ1 and Φ2 be two finite multi-sets of quantum states. Then
Φ2 is called a simple variant of Φ1, written Φ1 ≈ Φ2, if Φ2 can
be obtained from Φ1 by a finite number of applications of the
following manipulation:
• Take a finite number of elements {||ϕi〉|} from Φ1 with
dom(|ϕi1〉) ∩ dom(|ϕi2〉) = ∅ for any different i1 and i2,
and replace them by their tensor product

⊗
i |ϕi〉.

Transforming a quantum circuit to its normal form can help
us to recognize more clearly the role of physical resources
in distributed quantum computing. The following propositions
warrants the existence of normal form of each circuit.

Proposition 5.3: (Normal Form) For any circuit C, if C 6= 0,
then there exists a normal form C′ such that

1) C = C′;
2) cbit(C) = cbit(C′);

3) eres(C) ≈ eres(C′); and
4) for any partition P , C respects P if and only if C′ respects
P .

Proof. With Proposition 5.2, it is routine by induction on the
length of C. �

VI. ILLUSTRATIVE EXAMPLES

In this section, we present some examples to show how the
formal language designed in this paper and the algebraic laws
given in the last section can be used in describing and reasoning
about distributed quantum systems. Due to the limit of space,
we only consider some variants and generalizations of quantum
teleportation, one of the most famous quantum protocols.

A. Quantum Teleportation

Suppose that Alice and Bob generated a maximally entangled
two qubit state |E〉, each taking one qubit of it. Alice is asked
to send a qubit to Bob. She does not know the state of the qubit
and can only send classical information to Bob.

A solution to the above problem, called quantum teleportation,
was discovered by Bennet, Brassard, Crépeau, Jozsa, Peres and
Wootters [1]. Now quantum teleportation is widely used as a basic
component of various quantum communication protocols. In the
previous literature, quantum teleportation was often presented as a
circuit graph due to lack of suitable algebraic language. However,
using the language defined in the previous sections, quantum
teleprtation may be simply expressed by the following algebraic
equation:

TEL = CNOT1,2|E〉2,3 V H1 VM t
2[Xt

3]VMu
1 [Zu3 ].

Proposition 6.1: The circuit TEL can teleport a qubit in any
environment, even if the qubit is entangled with the environment.
Formally, if k ≥ 3 then for any |ψ〉 ∈ H⊗(k−2)2 we have
TEL|ψ〉1,4,...,k = |ψ〉3,...,k, and TEL separates qubit names 3

from 1, 2 and it uses 2 cbits and 1 ebit.
Proof. We can write |ψ〉1,4,...,k = α|0〉1|ψ0〉4,...,k +

β|1〉1|ψ1〉4,...,k. For simplicity, the subscripts 4, ..., k will be
dropped in |ψi〉4,...,k for i = 0, 1. Then the performance of TEL
is shown as follows:

|E〉2,3|ψ〉1,4,...k =
1√
2

(α|0〉1|ψ0〉+ β|1〉1|ψ1〉)(|00〉+ |11〉)2,3

CNOT1,2→ 1√
2

[α|0〉1(|00〉+ |11〉)2,3|ψ0〉+

β|1〉1(|10〉+ |01〉)2,3|ψ1〉]
H1→ 1

2
[α(|0〉+ |1〉)1(|00〉+ |11〉)2,3|ψ0〉+

β(|0〉 − |1〉)1(|10〉+ |01〉)2,3|ψ1〉]
Mt

2[X
t
3]→ 1√

2
[α(|0〉+ |1〉)1|0〉3|ψ0〉+ β(|0〉 − |1〉)1|1〉3|ψ1〉]

Mu
1 [Zu

3 ]
→ α|0〉3|ψ0〉+ β|1〉3|ψ1〉 = |ψ〉3,...,k = TEL|ψ〉1,4,...,k. �

We now consider a decomposition of TEL suggested by
Yimsiriwattana and Lomonaco [25]. This decomposition is given
in terms of a cat-like generator and a disentangler. The cat-like
generator is constructed by a CNOT gate, local operations (i.e.
one measurement and X−gates) and classical communication:

CATm+1 = CNOT1,2|Em〉2,...,m+1 VM t
2[Xt

3, ..., X
t
m+1].
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Give a qubit |ψ〉 = α|0〉+ β|0〉 and an m−qubit cat (GHZ) state
|Em〉. Then a cat-like state |ψm〉 = α|0〉⊗m + β|1〉⊗m can be
generated as follows:

|ψ〉1|Em〉2,...,m+1 =
1√
2

(α|0〉+ β|1〉)(|0〉⊗m + |1〉⊗m)

CNOT1,2→ 1√
2

[α|0〉(|0〉⊗m + |1〉⊗m)+

β|1〉(|1〉|0〉⊗(m−1) + |0〉|1〉⊗(m−1))]
Mt

2[X
t
3,...,X

t
m+1]→ (α|0〉⊗m + β|1〉⊗m)1,3,...,m+1

= CATm+1|ψ〉1.

(12)

We construct the disentangler as follows:

DISm =

m∏
i=2

Hi VM t
2,3,...,m[Z

f(t)
1 ],

where f(t) =
∑m
i=2 t(i) for each t ∈ 2{2,3,...,m}. Then a cat-like

state |ψm〉 can be transformed by DISm into states |ψ〉:

|ψm〉1,...,m
H2→H3→ ...

Hm→
1

2
m−1

2

[α|0〉(|0〉+ |1〉)⊗(m−1) + β|1〉(|0〉 − |1〉)⊗(m−1)]

=
1

2
m−1

2

2m−1−1∑
t=0

(α|0〉+ (−1)f(t)β|1〉)|t〉

Mt
2,3,...,m[Z

f(t)
1 ]

→ |ψ〉1 = DISm|ψm〉1,...,m.
(13)

Yimsiriwattana and Lomonaco’s decomposition of TEL may
be conveniently described in the language presented in this paper,
and its correctness can be proved through a series of simple
algebraic manipulations by employing several algebraic laws
given in the last section.

Proposition 6.2: The teleportation circuit is the composition
of a cat-like generator and a (renamed) disentangler: TEL =

CAT3 V DIS2[1/2, 3/1], where [1/2, 3/1] means that the qubit
names 2, 1 are substituted by 1, 3 respectively, and the other
qubit names are left unchanged (see the notation convention for
renaming, Eq. (10)).

Proof. This can be done by combining Eqs. (12) and (13)
directly. As a simpler proof, we have:

CAT3 V DIS2[1/2, 3/1] =

CAT3 V H2[1/2, 3/1]VM t
2[Zt1][1/2, 3/1] (Prop. 5.2.6)

= CAT3 V H1 VM t
1[Zt3] (Prop. 5.1.6)

= CNOT1,2 VM t
2[Xt

3]V H1 VM t
1[Zt3]

= CNOT1,2 V H1 VM t
2[Xt

3]VM t
1[Zt3] (Prop. 5.2.6)

= TEL. �

B. Remote Implementation of Quantum Circuits

A straightforward application of teleportation gives a remote
implementation of a quantum circuit. In this subsection, we use
symbols P,Q,R, S, T with or without subscripts to denote qubit
names.

The following proposition shows that two qubits in a circuit
can be moved to two locations far from each other by using
teleportation.

Proposition 6.3: Let C be a circuit with R ∈ dom(C), R ∈
codom(C), and P /∈ D(C). Then we have:

C[P/R] = TEL[P/1, Q1/2, R/3]

V C V TEL[R/1, Q2/2, P/3].

The right-hand side circuit uses 2 ebits and 4 cbits, and it separates
P from qubit names in D(C) \ {R} but the left-hand side does
not.

Proof. We write LHS and RHS for the left-hand and right-
hand side circuits, respectively. A routine calculation shows that
dom(LHS) = dom(RHS) and codom(LHS) = codom(RHS).
Furthermore, for any T1, ..., Tk with dom(C) ⊆ {R, T1, ..., Tk},
and for any |ψ〉 ∈ H⊗(k+1)

2 , assume that C(|ψ〉R,T1,...,Tk
) =

|ϕ〉R,S1,...,Sl
. Then using Proposition 6.1 we have:

|ψ〉P,T1,...,Tk

TEL[P/1,Q1/2,R/3]→ |ψ〉R,T1,...,Tk

C→ |ϕ〉R,S1,...,Sl

TEL[R/1,Q2/2,P/3]→ |ϕ〉P,S1,...,Sl
= RHS(|ψ〉P,T1,...,Tk

).

On the other hand, it follows that

LHS(|ψ〉P,T1,...,Tk
) = [P/R](C(|ψ〉R,T1,...,Tk

))

= [P/R](|ϕ〉R,S1,...,Sl
) = |ϕ〉P,S1,...,Sl

. �

Obviously, repeated applications of the above proposition can
help us to separate more qubits in a circuit from each other.

We now turn to show that two steps in quantum computing can
be implemented separately in two locations far from each other
by using teleportation.

Proposition 6.4: Let P,P0 ⊆ N , and let C1 and C2 be two
circuits with codom(C1)∩dom(C2) = P and codom(C2)∩P = P0.
Then we have:

C1 V C2 = C1 V
∏
P∈P

TEL[P/1, P ′/2, P ′′/3]

V C2[P ′′/P : P ∈ P]

V
∏
P∈P0

TEL[P ′′/1, P ′′′/2, P/3], and

1) The right-hand side circuit respects the partition {P ′ ∪
dom(C1)∪codom(C1)\P,P ′′∪P ′′′∪dom(C2)∪codom(C2)\
P}, where P ′ = {P ′ : P ∈ P}, and P ′′,P ′′′ are defined
similarly.

2) The right-hand side uses |P|+ |P0| ebits and 2(|P|+ |P0|)
cbits, where |Q| stands for the number of elements in Q.

Proof. The idea is similar to the proof of Proposition 6.3, but
the details are much more complicated. We omit the complicated
but routine details here. �

van Meter, Munro, Nemoto and Itoh [21] distinguished two
schemes of applications of teleportation in distributed quantum
computing. When two qubits in different nodes are required to
interact, we have the following two choices: (1) teledata - moving
data (qubits) from node to the other, and then performing the
shared gates; (2) telegate - using a teleported gate [11] directly
on the qubits, without moving them. Indeed, the above two
propositions give a (partial) formal description of teledata and
a verification of its correctness. In the next section, a special case
of telegate will be formally described in the algebraic language
introduced in the present paper.

C. Remotely Controlled Gates

A distributed implementation of a controlled gate was proposed
by Eisert, Jacobs, Papadopoulos and Plenio [7] and Collins,
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Linden and Popescu [4]. Their main results can be recast in a
precise and convenient way by employing the formal language
for distributed quantum computing developed in this paper. Let
us consider controlled gate C(n)(U), where ar(U) = k, and let
N = {P1, Q1, ..., Pn, Qn, T1, ..., Tn+k}. Suppose that there are n
agents, and the ith agent posseses two qubits Pi and Qi for each
i ≤ n. These agents are far from each other, but they are going
to work together to implement a remote control of C(n)(U). For
every i ≤ n, the ith agent will use the Pi qubit as his control qubit,
and furthermore we assume that Qi and Ti share a maximally
entangled state. Then we have:

Proposition 6.5: A nonlocal C(n)(U) can be implemented by
local operations and classical communication between entangled
subsystems:

C(n)(U)P1,...,Pn,Tn+1,...,Tn+k
=

n∏
i=1

CAT3[Pi/1, Qi/2, Ti/3]

V C(n)(U)T1,...,Tn+k
V

n∏
i=1

DIS2[Pi/1, Ti/2].

(14)

The right-hand side circuit uses 2n cbits and n ebits, and it
respects the partition {{P1, Q1}, ..., {Pn, Qn}, {T1, ..., Tn+k}},
but the left-hand side one does not.

A graph representing the quantum circuit in the right-hand
side of Eq. (14) must be very big and complicated. Eq. (14)
demonstrates once again the advantage of the formal language
defined in the present paper.

To prove the above proposition, we first need the following
lemma, which can be seen as a component of the above proposi-
tion.

Lemma 6.1: For any R1, ..., Rn+k and i ≤ n, we have:

C(n)(U)R1,...,Ri−1,Pi,Ri+1,...,Rn+k
= CAT3[Pi/1, Qi/2, Ri/3]

V C(n)(U)R1,...,Rn+k
V DIS2[Pi/1, Ri/2].

Proof. We observe that CAT3|j〉1 = |j〉1|j〉3 for j = 0, 1. Then
for any j1, ..., jn ∈ {0, 1} and |ψ〉 ∈ H⊗{Tn+1,...,Tn+k}

2 , we have

|j1...jn〉P1...Pn
|ψ〉

∏n
i=1 CAT3[Pi/1,Qi/2,Ti/3]−→

n⊗
i=1

|jiji〉PiTi
|ψ〉

C(n)(U)T1,...,Tn+k−→
n⊗
i=1

|jiji〉PiTi
Uj1...jn |ψ〉

∏n
i=1DIS2[Pi/1,Ti/2]−→

n⊗
i=1

|ji〉Pi
Uj1...jn |ψ〉

because DIS2|j〉1|j〉2 = |j〉1 for j = 0, 1. �

Proof of Proposition 6.5. By Propositions 5.2.2, 5.2.6, 5.2.10
and 5.2.11 and 6.1, we obtain:

RHS =

n∏
i=2

CAT3[Pi/1, Qi/2, Ti/3]

V (CAT3[P1/1, Q1/2, R1/3]

V C(n)(U)R1,...,Rn+k
V DIS2[P1/1, R1/2])

V
n∏
i=2

DIS2[Pi/1, Ti/2]

=

n∏
i=2

CAT3[Pi/1, Qi/2, Ti/3]

V C(n)(U)P1,R2,...,Rn+k
V

n∏
i=2

DIS2[Pi/1, Ti/2].

Therefore, repeating the above process n times, we complete the
proof. �

VII. CONCLUSION

To provide formal methods for specifying and verifying dis-
tributed quantum systems, we design an algebraic language in
which unitary transformations and quantum measurements as well
as classical communications and use of quantum resources can be
expressed in a convenient and compact way. Several examples are
presented to illustrate the expressive power of this language, and
some basic algebraic laws are established for distributed quantum
computing. One unsolved fundamental problem is to prove the
following:

Conjecture 7.1: Let C1 and C2 be two circuits, and let I and
J be two finite subsets of N such that dom(C1), dom(C2) ⊆ I

and J ∩ dom(C1) = J ∩ dom(C2) = ∅. Then C1 =I C2 implies
C1 =I∪J C2.

The intuitive meaning of the above conjecture is that if
two circuits are equivalent in a smaller environment then their
equivalence will be preserved when they are put into a bigger
environment.

This paper is merely the first step of a long-term project of
algebraic studies of quantum circuits for distributed quantum
computing. It is worth noting that the algebraic laws given in
the current paper are all structural laws which do not depend on
special properties of the involved unitary operators and quantum
measurements. As the next step, we shall choose a univer-
sal (or approximately universal) class of unitary operators and
systematically examine algebraic properties of quantum circuits
generated by the chosen unitary operators. In particular, we hope
to isolate some fundamental laws (axioms) which are adequate for
equational reasoning about these circuits. The difference between
these laws and the laws established in this paper is that the former
will heavily depend on special properties of the chosen unitary
operators.

It should be pointed out that quantum circuit expressions
written in the language defined in this paper appear to be quite
different from Boolean expressions although their functions are
similar. The reason is two-fold. First, Boolean expressions are
usually written in terms of three special logical connectives,
namely, negation, conjunction and disjunction, whereas in this
paper unitary operators are treated in an abstract way. Quan-
tum circuit expressions will become more similar to Boolean
expressions whenever we choose to consider only some special
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unitary operators; for example one-qubit and two-qubit gates.
Second, negation, conjunction and disjunction enjoy some nice
operational properties such as the de Morgan law, distributivity
of conjunction over disjunction and disjunction over conjunction.
These properties enable us to manipulate Boolean expressions
effectively; for example Boolean expressions have their conjunc-
tive and disjunctive normal forms. However, as mentioned in the
above paragraph, such operational properties are still to be found
for quantum circuits.

Distributed quantum computing is an emerging area, and many
very interesting topics are still untouched. As was pointed out in
the introduction, major work in the area of distributed quantum
computing were devoted to the following two topics: (1) finding
quantum algorithms for solving problems from classical dis-
tributed computing; and (2) using many small capacity quantum
computers to simulate a large capacity quantum computer. How-
ever, research on both topics are at the very beginning. Teleporta-
tion between two parties has been widely used in distributed quan-
tum computing; see Section VI for examples. However, many-
partite teleportation have still not been understood well. Recently,
Wang and the author [23], [24] generalized the teleportation and
super-dense coding protocols to the case of more than two parties.
An interesting problem for further studies is to exploit the power
of these new protocols in distributed quantum computing. As is
well-known, one of the most important applications of quantum
computing is the simulation of quantum systems. So, another
interesting problem would be to explore the possibility of using
distributed quantum computing in simulation of quantum many-
body systems. Compared to classical distributed computing, an
entirely new topic is to exploit the power of entanglement in
distributed quantum computing and to understand further the role
of entanglement in computing in general [15], [6].

In recent years, Gay and Nagarajan [9], [10], Jorrand and
Lalire [13], [14], [16], [17] and Feng, Duan, Ji and the author [8],
[27] proposed process algebra approaches to distributed and
concurrent quantum computing. The main purpose of these works
is quite different from that of this paper, and they mainly aimed
to provide formal models for verifying quantum communication
protocols. The relationship between quantum process algebras and
the language defined in this paper is similar to that between classi-
cal process algebras and Boolean algebra. Roughly speaking, the
former is suited to high-level formal specification of distributed
quantum computing, and the later will mainly be used to describe
low-level circuit implementation. It is very interesting to further
clarify the relationship between the formal models introduced
in [9], [10], [13], [14], [16], [17], [8], [27] and the language
designed in this paper.

APPENDIX I
PROOF OF PROPOSITION 4.1

We proceed by induction on the length of C. The trick is to
simultaneously prove our conclusion and the following:
• Claim. If C(E) 6= ∅, then dom(E) ∩ codom(C) ⊆ dom(C).

We consider the following cases:
• Case 1. C = 0. Obvious.
• Case 2. C is a primitive action. The proof for this case is

routine.
• Case 3. C = C′|ψ〉. We first prove the above claim. If
C(E) 6= ∅, then dom(E) ∩ dom(|ψ〉) = ∅ and C(E) =

C′(E ⊗ |ψ〉). Thus, for any n ∈ N , if n ∈ dom(E) and
n ∈ codom(C) = codom(C′) ∪ [dom(|ψ〉) \ dom(C′)], then
we have n 6∈ dom(|ψ〉). This leads to n ∈ codom(C′). By
the induction hypothesis on C′ we obtain dom(E ⊗ |ψ〉) ∩
codom(C′) ⊆ dom(C′). Therefore, it holds that n ∈ dom(C′),
and furthermore we have n ∈ dom(C′) \ dom(|ψ〉) =

dom(C).
Second, we prove Eq. (11). If C(E) 6= ∅, then dom(E) ∩

dom(|ψ〉) = ∅, and it holds that dom(E) \ dom(C) =

dom(E) \ (dom(C′) \ dom(|ψ〉)) = dom(E) \ dom(C′), and
codom(C)∪ [dom(E) \ dom(C)] = codom(C′)∪ (dom(|ψ〉) \
dom(C′)) ∪ (dom(E) \ dom(C′)) = codom(C′) ∪ (dom(E) ∪
dom(|ψ〉) \ dom(C′)) = dom(C′(E ⊗ |ψ〉)) = dom(C(E)).

• Case 4. C = C′[θ]. To prove the above claim, assume
that C(E) = θ(C′(θ−1(E))) 6= ∅, then C′(θ−1(E)) 6= ∅,
and the induction hypothesis asserts that dom(θ−1(E)) ∩
codom(C′) ⊆ dom(C′). This yields dom(E) ∩ codom(C) =

θθ−1(dom(E)) ∩ θ(codom(C′)) = θ(dom(θ−1(E)) ∩
codom(C′)) ⊆ θ(dom(C′)) = dom(C). On the other
hand, we have: dom(C(E)) = dom(θ(C′(θ−1(E))) =

θ(dom(C′(θ−1(E))) = θ(codom(C′) ∪ [dom(θ−1(E)) \
dom(C′)]) = θ(codom(C′))∪[θθ−1(dom(E))\θ(dom(C′))] =

codom(C) ∪ [dom(E) \ dom(C)].
• Case 5. C = C1 V C2. Suppose that C(E) = C2(C1(E)) 6= ∅.

Then C1(E) 6= ∅, and by the induction hypothesis on C1,
we obtain dom(E) ∩ [codom(C1) \ dom(C2)] ⊆ dom(E) ∩
codom(C1) ⊆ dom(C1) ⊆ dom(C). Thus, it suffices to
show that dom(E) ∩ codom(C2) ⊆ dom(C) = dom(C1) ∪
[dom(C2)\codom(C1)] since we have: dom(E)∩codom(C) =

dom(E)∩[codom(C2)∪(codom(C1)\dom(C2))] = [dom(E)∩
codom(C2)]

∪ [dom(E)∩(codom(C1)\dom(C2))]. For any n ∈ dom(E)∩
codom(C2), we are going to show that n ∈ dom(C1) or n ∈
dom(C2) \ codom(C1). Indeed, if n 6∈ dom(C2) \ codom(C1),
then n 6∈ dom(C2) or n ∈ codom(C1). For the case of
n ∈ codom(C1), the induction hypothesis, together with the
fact that C1(E) 6= ∅, implies that n ∈ dom(C1). For the
case of n 6∈ dom(C2), since C2(C1(E)) 6= ∅, the induction
hypothesis on C2 leads to dom(C1(E)) ∩ codom(C2) ⊆
dom(C2). Noting that n ∈ codom(C2), we obtain n 6∈
dom(C1(E)). Furthermore, by the induction hypothesis we
obtain dom(C1(E)) = codom(C1) ∪ [dom(E) \ dom(C1)].

Therefore, n 6∈ dom(E)\dom(C1). This implies n ∈ dom(C1)

because n ∈ dom(E), and we complete the proof of the
claim.

To prove Eq. (11), we first obtain:

dom(C(E)) = codom(C2) ∪ [dom(C1(E)) \ dom(C2)]

= codom(C2)∪
[codom(C1) ∪ (dom(E) \ dom(C1)) \ dom(C2)]

= codom(C2) ∪ [codom(C1) \ dom(C2)]∪
[dom(E) \ dom(C1) \ dom(C2)]

= codom(C) ∪ [dom(E) \ dom(C1) \ dom(C2)]

by using the induction hypothesis. Note that dom(C) =

dom(C1) ∪ [dom(C2) \ codom(C1)] ⊆ dom(C1) ∪ dom(C2).

Then we observe dom(C(E)) ⊆ codom(C) ∪ [dom(E) \
dom(C)]. Conversely, if n ∈ dom(E) \ dom(C), then we
see that n ∈ dom(E), and n 6∈ dom(C), which implies
n 6∈ dom(C1) and n 6∈ dom(C2) \ codom(C1). If C(E) =
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C2(C1(E)) 6= ∅, then C1(E) 6= ∅, and we have dom(E) ∩
codom(C1) ⊆ dom(C1) by the induction hypothesis on
C1. Thus, n ∈ dom(E) and n 6∈ dom(C1) imply n 6∈
codom(C1). Furthermore, we obtain n 6∈ dom(C2), and
n ∈ dom(E) \ dom(C1) \ dom(C2). Therefore, it follows
that dom(E) \ dom(C) ⊆ dom(E) \ dom(C1) \ dom(C2) and
codom(C) ∪ [dom(E) \ dom(C)] ⊆ dom(C(E)). �

APPENDIX II
PROOF OF PROPOSITION 5.1

We only prove 3 and 5, and the others are left to the reader.
3. It suffices to observe that (g◦h−1)(U)g = Uh. To prove this

equality, we first consider the simple case of U =
⊗ar(U)
k=1 Uk,

where each Uk is a single-qubit gate. If I ⊇ ran(h), then
for any |ψ〉 =

⊗
i∈I |ψi〉i, we have (g ◦ h−1)(U)g−1(i) =

U(g◦h−1)(g−1(i)) = Uh−1(i) for each i ∈ ran(h), and

(g ◦ h−1)(U)g|ψ〉

=
⊗

i∈ran(h)

(g ◦ h−1)(U)g−1(i)|ψi〉i ⊗
⊗

i∈I\ran(h)

|ψi〉i

=
⊗

i∈ran(h)

(Uh−1(i)|ψi〉i)i ⊗
⊗

i∈I\ran(h)

|ψi〉i = Uh|ψ〉.

The proof for the general case can be easily achieved by linearity.
5. Any quantum state |ψ〉 with dom(|ψ〉) ⊇ I ∪ J ∪⋃k
l=1 ran(hl) ∪

⋃m
n=1 ran(dn) can be written in the compu-

tational basis of I−qubits: |ψ〉 =
∑
t∈2I αt|t〉I |ψt〉, where

|ψt〉 is in H(⊗dom(|ψ〉)\I)
2 for each t. Since I ∩ J = ∅, we

have J ⊆ dom(|ψ〉) \ I, and each |ψt〉 can be written in the
computational basis of J−qubits: |ψt〉 =

∑
u∈2J βtu|u〉J |ψtu〉

where |ψtu〉 is in H(⊗dom(|ψ〉)\I∪J)
2 for each u. Thus, |ψ〉 =∑

t∈2I
∑
u∈2J αtβtu|t〉I |u〉J |ψtu〉. We write LHS and RHS for

the circuits in the left-hand and right-hand sides, respectively.
Then RHS(|ψ〉) = {(|αtβtu|2, V ′m...V ′1U ′k...U

′
1|ψtu〉) : t ∈

I and u ∈ 2J} where U ′l stands for Ufl(t)lhl
and V ′n for V gn(u)ndn

,
l ≤ k and n ≤ m. On the other hand, we have:

U ′k...U
′
1|ψt〉 =

∑
u∈2J

βtu|u〉JU ′k...U
′
1|ψtu〉

because J ∩ ran(hl) = ∅ for all l ≤ k. Consequently,

|ψ〉 MI→ {(|αt|2, U ′k...U
′
1|ψt〉) : t ∈ 2I}

MJ→ {(|αt|2|βtu|2, V ′m...V ′1U ′k...U
′
1|ψtu〉) : t ∈ I and u ∈ 2J}

= LHS(|ψ〉)

where MI and MJ are abbreviations of the first and second
primitive actions, respectively, in the left-hand side. �

APPENDIX III
PROOF OF PROPOSITION 5.2

We only prove items 4, 5 and 8, and the others are left to the
reader.

4. We proceed by induction on the length of C1.
• Case 1. C1 = 0. Trivial.
• Case 2. C1 is a primitive action. Then we proceed by

induction on the length of C2. The case of C2 = 0 is trivial,
and the case that C2 is also a primitive action is immediate
from Propositions 5.1.4 and 5.1.5. We now consider the
following subcases:

– Subcase 2.1. C2 = C′2|ψ〉. Since dom(|ψ〉) ∩
D(C1), D(C1)∩D(C′2) ⊆ D(C1)∩D(C2) = ∅, we obtain
C1 V C2 = (C1 V C′2)|ψ〉 = (C′2 V C1)|ψ〉 = C2 V C1
by 10, 11(a) and the induction hypothesis on C′2.

– Subcase 2.2. C2 = C′2[θ]. Since D(C1[θ−1]) ∩D(C′2) =

θ−1(D(C1) ∩ D(C2)) = ∅, we obtain C1 V C2 =

(C1[θ−1]V C′2)[θ] = (C′2 V C1[θ−1])[θ] = C2 V C1 by
8, 11(b), Propositions 5.1.5 and 5.1.6, and the induction
hypothesis on C′2.

– Subcase 2.3. C2 = C21 V C22. Then D(C1) ∩
D(C21), D(C1)∩D(C22) ⊆ D(C1)∩D(C2) = ∅, and we
obtain C1 V C2 = (C1 V C21)V C22 = (C21 V C1)V
C22 = C21 V (C1 V C22) = C21 V (C22 V C1) =

C2 V C1 by 7, 11(c) and the induction hypothesis on
C21 and C22.

• Case 3. C1 = C′1|ψ〉. Similar to Subcase 2.1.
• Case 4. C1 = C′1[θ]. Similar to Subcase 2.2.
• Case 5. C1 = C11 V C12. Similar to Subcase 2.3.
5. By Definition 4.1 we obtain:

dom(C1 V (C2 V C3))

= dom(C1) ∪ [dom(C2 V C3) \ codom(C1)]

= dom(C1) ∪ [dom(C2)

∪ (dom(C3) \ codom(C2)) \ codom(C1)]

= dom(C1) ∪ [dom(C2) \ codom(C1)]∪
[dom(C3) \ codom(C1) ∪ codom(C2)]

= dom(C1 V C2) ∪ [dom(C3) \ codom(C1) ∪ codom(C2)], and

dom((C1 V C2)V C3)

= dom(C1 V C2) ∪ [dom(C3) \ codom(C1 V C2)]

= dom(C1 V C2) ∪ [dom(C3)\
(codom(C1) \ dom(C2)) ∪ codom(C2)].

Since C2 V C3 is well-defined, we have [dom(C2)\codom(C2)]∩
dom(C3) = ∅, and

dom(C3) \ (codom(C1) \ dom(C2)) ∪ codom(C2)

= [dom(C3) \ codom(C1) ∪ codom(C2)]

∪ [(dom(C2) \ codom(C2)) ∩ dom(C3)]

= dom(C3) \ codom(C1) ∪ codom(C2).

Therefore, dom(C1 V (C2 V C3)) = dom((C1 V C2) V C3).

Finally, for any |ψ〉 with dom(|ψ〉) ⊇ dom(C1 V (C2 V C3)), it
holds that

(C1 V (C2 V C3))(|ψ〉) = (C2 V C3)(C1(|ψ〉))
= C3(C2(C1(|ψ〉))) = C3((C1 V C2)(|ψ〉))
= ((C1 V C2)V C3)(|ψ〉).

8. We only prove the second part, and the first part is similar.
First, we have:

dom((C1 V C2)|ψ〉)
= dom(C1) ∪ [dom(C2) \ codom(C1)] \ dom(|ψ〉)
= dom(C1) ∪ [dom(C2) \ codom(C1) \ dom(|ψ〉)]
= dom(C1 V C2|ψ〉)

because dom(C1) ∩ dom(|ψ〉) = D(C1) ∩ dom(|ψ〉) = ∅.
Second, for any |ϕ〉 with dom(|ϕ〉) ⊇ dom((C1 V C2)|ψ〉),

if dom(|ϕ〉) ∩ dom(|ψ〉) 6= ∅, then (C1 V C2|ψ〉)(|ϕ〉) =

C1(C2|ψ〉(|ϕ〉)) = C1(∅) = ∅ = (C1 V C2)|ψ〉(|ϕ〉). For the
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case of dom(|ϕ〉) ∩ dom(|ψ〉) = ∅, we note that dom(|ψ〉) ∩
codom(C1) ⊆ dom(|ψ〉) ∩ D(C1) = ∅. By Proposition 4.1 we
obtain: dom(C1(|ψ〉)) = codom(C1)∪[dom(|ϕ〉)\dom(C1)]. Then
dom(|ψ〉)∩ dom(C1(|ϕ〉)) = ∅, and it follows from Lemma 4.1.3
that

(C1 V C2|ψ〉)(|ϕ〉) = C2|ψ〉(C1(|ϕ〉)) = C2(|ψ〉 ⊗ C1(|ϕ〉))
= C2(C1(|ψ〉 ⊗ |ϕ〉)) = (C1 V C2)(|ψ〉 ⊗ |ϕ〉) =

(C1 V C2)|ψ〉(|ϕ〉). �
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