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1. INTRODUCTION

Quantum information science is usually divided into two subareas: quantum computation
and quantum communication. Quantum computation offers the possibility of considerable
speedup over classical computation by exploring the power of superposition of quantum
states. Two striking examples of quantum algorithms are Shor’s quantum factoring and
Grover’s quantum searching. On the other hand, some communication protocols are pro-
posed by employing quantum mechanical principles (in particular, the no-cloning property
and entanglement), for example BB84 and B92, which are provably secure. Quantum
communication systems using these protocols are already commercially available from Id
Quantique, MagiQ Technologies and NEC.

The studies of quantum process algebras allow us to glue the two subareas of quantum
information science. To provide formal techniques for modeling, analysis and verification
of quantum communication protocols, Gay and Nagarajan [5], [6] defined a language CQP
(Communicating Quantum Processes), which is obtained from the pi-calculus by adding
primitives for measurements and transformations of quantum states and allowing transmis-
sion of qubits. They gave an operational semantics and presented a type system for CQP,
and in particular proved that the semantics preserves typing and that typing guarantees that
each qubit is owned by a unique process within a system. To model concurrent quantum
computation, Jorrand and Lalire [7], [8], [11], [12] defined a language QPAlg (Quantum
Process Algebra). It is obtained by adding primitives expressing unitary transformations
and quantum measurements, as well as communications of quantum states, to a classical
process algebra, which is similar to CCS. An operational semantics of QPAlg is given,
and further a probabilistic branching bisimulation between quantum processes modeled in
QPAlg is defined.

In this paper, we introduce a new algebra of quantum processes, qCCS, which is a quan-
tum generalization of CCS. The design decision of qCCS differs from that of the previous
quantum process algebras in the following two aspects: (1) The driving idea of the de-
sign of CQP is to provide formal model for analyzing quantum communication protocols.
Almost all of the existing quantum protocols involve transmission of both classical and
quantum data. The purpose of designing QPAlg is to model cooperation between quantum
and classical computations. Thus, these quantum process algebras have to accommodate
quantum communication as well as classical communication. The aim of the present paper
is different, and we mainly want to provide a suitable framework in which we can un-
derstand the mechanism of quantum concurrent computation and observe interaction and
conjugation of computation and communication in quantum systems. At the first step,
it is reasonable to isolate quantum data from classical data so that we have a much sim-
pler model in which a clearer understanding of quantum concurrent computation may be
achieved. So, we decide to focus our attention on an algebra of purely quantum processes,
not involving any classical information. Of course, in the future, after we have a thorough
understanding of purely quantum processes, qCCS can be extended by adding classical in-
gredients. (2) The mathematical tools used to describe transformations of quantum states
in the previous quantum process algebras are unitary operators. According the basic postu-
lates of quantum mechanics, unitary operators are suited to depict the dynamics of closed
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quantum systems, but a more suitable mathematical formalism for evolution of open quan-
tum systems is given in terms of super-operators. Since quantum process algebras are
mainly applied in modeling quantum concurrent systems in which interactions between
their subsystems happen frequently, and it seems more reasonable to treat the involved sys-
tems as open systems, we choose to use super-operators in describing transformations of
quantum states. Indeed, the usage of super-operators in qCCS was influenced by Selinger’s
denotational semantics for his quantum functional programming language QPL [16].

There are still some technical differences between qCCS and the previous quantum pro-
cess algebras. First, the treatment of quantum variables and their substitutions is a key
ingredient in defining the operational and bisimulation semantics of qCCS. This was not
addressed in the previous works. It was already realized in [4], [5], [6], [7], [8], [11],
[12] that one should consider passing of the quantum systems used to express certain quan-
tum information instead of passing of the quantum information itself, due to the no-cloning
property of quantum information [18]. Hence, quantum variables must be explicitly intro-
duced to denote the quantum systems under consideration. In treating quantum variables
in qCCS, we follow the way of manipulating names in the pi-calculus [14]. But a serious
difference is that distinct quantum variables cannot be substituted by the same quantum
variable, complying with, again, the no-cloning theorem of quantum information. Second,
as in classical process algebras, operational semantics of quantum processes is presented
in terms of transitions between configurations. However, a quantum variable and its cur-
rent state have to be separated in order to avoid abuse of quantum information which may
violate the no-cloning theorem. Thus, a quantum configuration defined in [4], [5], [6],
[71, [8], [11], [12] consists of a quantum process together with state information of
the involved quantum variables. In this paper, a configuration is required to record state
information of all quantum variables (not only those occurring in the process under con-
sideration). Although a configuration defined in this way includes some unnecessary in-
formation, it allows us to simplify considerably our presentation. (Note that such a simple
idea is widely used in mathematical logic; for example, it simplifies the presentation of
propositional logic in the following way: in evaluating a given propositional formula we
only need to know the truth values assigned to the propositional variables occurring in this
formula, but a truth valuation is generally defined to be an assignment of truth values to all
propositional variables.) Third, in the previous works [4], [5], [6], [7], [8], [11], [12],
the operational semantics of a quantum process algebra is always defined to be a proba-
bilistic transition system, but this paper presents a non-probabilistic operational semantics
of qCCS. This is realized by treating quantum measurements as super-operators (see Ex-
ample 2.5(2) and (3)), and it considerably simplifies the bisimulation semantics of qCCS.
Nevertheless, probabilistic information still can be retrieved from such a non-probabilistic
semantics via Eq. (1) below. Fourth, only the notion of exact bisimulation is generalized
to quantum processes in [4], [11]. Recall that a set of classical gates is universal if it
can be used to compute exactly an arbitrary boolean function. However, exact universality
does not make sense in quantum computation because all quantum gates form a continuum
which cannot be generated by a finite set of quantum gates. Instead, a set of quantum
gates is said to be universal provided any quantum gate can be approximated to arbitrary
accuracy by a circuit constructed from the gates in this set. To describe approximation be-
tween quantum processes and, in particular, implementation of a quantum process by some
(usually finitely many) special quantum gates, an approximate version of bisimulation (or
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equivalently, bisimulation distance) is still missing. Recently, the first author [19], [20],
[21] and van Breugel [17] among others introduced the notion of approximate bisimula-
tion for classical processes in which a distance between actions is presumed. In the present
paper, both exact and approximate bisimulations are defined in qCCS, the latter using a dis-
tance between super-operators induced naturally from the trace distance of quantum states.
We believe that approximate bisimulations are appropriate formal tools for analyzing ro-
bustness of quantum processes against inaccuracy in the implementation of its elementary
gates.

This paper is organized as follows: Section 2 reviews some basic notions, needed in
the subsequent sections, from quantum theory. In Section 3 we define the syntax and an
operational semantics of qCCS and give some simple examples to illustrate the expres-
sive power of qCCS. The notion of strong bisimulation between quantum processes is
introduced, monoid and expansion laws as well as congruence and recursive properties of
strong bisimilarity are established, and uniqueness of solutions of equations with respect
to strong bisimilarity is presented in Section 4. In Section 5, we first define a reduction
relation between strings of quantum operations and then extend it to a reduction between
quantum processes. The notion of strong reduction-bisimilarity is defined by combining
reduction relation and strong bisimilarity, and it is shown to be congruent under the pro-
cess constructors in qCCS. In Section 6, the notions of approximate strong bisimilarity
and reduction-bisimilarity are proposed and their corresponding metrics are defined. It is
proved that all process constructors are non-expansive with respect to both strong bisimu-
lation metric and reduction-bisimulation metric. Section 7 is the concluding section where
we draw a brief conclusion and mention some topics for further studies. For readability,
we put the detailed proofs of some propositions in the Appendix.

2. PRELIMINARIES

For convenience of the reader we briefly recall some basic notions from quantum theory
and fix the notations needed in the sequel. We refer to [15] for more details.

2.1 Hilbert spaces

An isolated physical system is associated with a Hilbert space which is called the state
space of the system. In this paper, we mainly consider finite-dimensional and countably
infinite-dimensional Hilbert spaces. A finite-dimensional Hilbert space is a complex vector
space H together with an inner product which is a mapping (-|-) : H x H — C satisfying
the following properties:

(1) {p|p) > 0 with equality if and only if |p) = 0;

@) {pld) = Wler™

(B) (plMthr + Aathe) = Ar{plthr) + Aa(plta),

where C is the set of complex numbers, and A* stands for the conjugate of A\ for each
complex number A € C. All countably infinite-dimensional Hilbert spaces considered

in this paper will be simply treated as tensor products of countably infinitely many finite-
dimensional Hilbert spaces (see Subsection 2.4 below).

EXAMPLE 2.1. Letn > 1. Forany |p) = (1,....,z,)T, [¥) = (Y1, ..., yn)T € C"
and )\ € C, we define:

_ T
|90>+|1/J> - (‘rl +y17"’7xn+yn) ’
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)‘|SO> = ()‘xla EES) )‘xn)Ta

where T stands for transpose. Then C™ is a vector space. We often write (| for the adjoint
l)T of |¢). Furthermore, we define (-|-) in C™ as follows:

(ply) = Z T3 Y-
i=1

Then (C™, (:|-}) is an n—dimensional Hilbert space. Indeed, each n—dimensional Hilbert
space is isometric to C". In particular, a qubit is a physical system whose state space is

Ho = C2. If we write |0) = <(1)> and |1) = ((1)> , corresponding to one-bit classical

values and called the computational basis, then a qubit has state «|0)+3|1) with o, 3 € C
and |a|* + |B|? = 1. The Hadamard basis consists of the following two states:

1 1
= S0+ ). 1= 5500 - 1),

For any vector |¢) in H, its length ||¢}|| is defined to be \/(¥|¢). A pure state of a
quantum system is a unit vector in its state space; that is, a vector |¢) with ||¢p|| = 1. An
orthonormal basis of a Hilbert space H is a basis {|¢) } with

[ L ifi=y,
(il7) :{

0, otherwise.

+)

Then the trace of a linear operator A on H is defined to be
tr(A) = (ilAli).
A mixed state of quantum system is represented by a density operator. A density operator
in a Hilbert space H is a linear operator p on it fulfilling the following conditions:
(1) pis positive in the sense that (1|p|y) > 0 for all |¢));
(2) tr(p) = 1.
An equivalent concept of density operator is an ensemble of pure states. An ensemble is

a set of the form {(p;, |1;))} such that p; > 0 and |¢;) is a pure state for each ¢, and
> ;pi = 1. Then

p= Zpi|¢i><¢i|

is a density operator, and conversely each density operator can be generated by an ensemble
of pure states in this way. A positive operator p is called a partial density operator if
tr(p) < 1. We write D(H) for the set of partial density operators on H.

2.2 Unitary operators

The evolution of a closed quantum system is described by a unitary operator on its state
space. A linear operator U on a Hilbert space H is said to be unitary if UTU = I, where
I3 is the identity operator on H, and U is the adjoint of U. If the states of the system at
times ¢, and ¢, are p; and ps, respectively, then

P2 =U,01UJr
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6 . Mingsheng Ying et al.

for some unitary operator U which depends only on ¢; and 2. In particular, if p; and ps

are pure states |11) and [¢)q), respectively; that is, p1 = [11) (w1 and ps = |th2) (1)2], then
we have [¢2) = Uly).

EXAMPLE 2.2. The most frequently used unitary operators on qubits are the Hadamard

transformation:
1 /11
=551 h)

10 01
=(o7): ==(Vo)
(0 —i 10

b=\ o) 9 0-1)"

2.3 Quantum measurement

and the Pauli matrices:

A quantum measurement is described by a collection {M,,,} of measurement operators,
where the indexes m refer to the measurement outcomes. It is required that the measure-
ment operators satisfy the completeness equation

> MM, = Iy
m
If the system is in state p, then the probability that measurement result m occurs is given
by
p(m) = tr(M] M,,p),

and the state of the system after the measurement is

MmpM;EL
p(m)
For the case that p is a pure state |1)), we have p(m) = ||M,,|¥)||?, and the post-
measurement state is
M)
p(m)’

EXAMPLE 2.3. The measurement on qubits in the computational basis consists of Py =
|0){0| and Py = |1)(1|. If we perform it on a qubit which is in state «|0) 4 3|1), then either
the result O will be obtained, with probability ||?, or the result 1, with probability | 3]?.

2.4 Tensor products

The state space of a composite system is the tensor product of the state spaces of its com-

ponents. Let H; and H, be two Hilbert spaces. Then their tensor product H; ® H5 consists

of linear combinations of vectors |¢)12) = |1)1) ® |t2) with |tb1) € H; and |1)9) € Ho.
For any linear operator A; on H; and As on Ha, A1 ® A, is an operator on H;1 ® Ho

and it is defined by

(A1 ® A2)|th11h2) = Ai|yn) @ As|tha)
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for each |¢1) € Hy and |[¢2) € Ho.

Let [p) = >, aslpripai) and [¢0) = 37, Bjl1h14p2;) € Hi ® Ho. Then their inner
product is defined as follows:

(ply) = Zafﬁj<801i|¢1j><¢2i|¢2j>-
0]

EXAMPLE 2.4. A composite quantum system can exhibit the phenomenon of entan-
glement. A state of a composite system is an entangled state if it cannot be written as a
product of states of its component systems. The following are maximally entangled states
of two-qubits, called Bell states:

wwigmwmm mmzﬁmmmm
1Bio) = —=([00) — [11)),  |Bu1) = —=(j01) — |10)).

V2 V2

The notion of tensor product may be easily generalized to the case of any finite num-
ber of Hilbert spaces. The tensor product of countably infinitely many finite-dimensional
Hilbert spaces is a countably infinite-dimensional Hilbert space isometric to [? of se-
quences {z,, }°2, of complex numbers such that >~ |x,,|* converges. The vector addi-
tion, scalar multiplication and inner product are defined as follows:

|0 +19) = {zn + yn}tilo,

Alp) = {Aen}nlo,

ey = 3 @iy
n=0

for any |¢) = {2,120, [¥) = {yn}22, € [? and A € C. Itis easy to see that [? enjoys
the following completeness: if {|¢,)}5, is a Cauchy sequence in [2, i.e. for any € > 0,
there exists positive integer N such that ||, — @,|| < € for all m,n > N, then exists
lo) € 12 with lim,, .o |@n) = |©), i.e. for any € > 0, there exists positive integer N such
that ||, — ¢|| < eforalln > N.

The notion of tensor product of two linear operators can be generalized to the case of
more than two operators and the case of countably infinitely many operators in a natural
way. Since density operators are special linear operators, their tensor product is then well-
defined. A basic postulate of quantum mechanics asserts that if component system 7 is in
state p; for each 4, then the state of the composite system is &), p;.

2.5 Super-operators

The dynamics of open quantum systems cannot be described by unitary operators, and
one of its mathematical formalisms is the notion of super-operator. A super-operator on a
Hilbert space H is a linear operator £ from the space of linear operators on H into itself
which satisfies the following two conditions:

(1) tr[E(p)] < tr(p) for each p € D(H);
(2) Complete positivity: for any extra Hilbert space Hg, (Zr ® £)(A) is positive provided
A is a positive operator on Hr ® H, where Zp, is the identity operation on H .

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.



8 . Mingsheng Ying et al.
If (1) is strengthened to tr[E(p)] = tr(p) for all p € D(H), then & is said to be trace-
preserving.

EXAMPLE 2.5. (I) Let U be a unitary operator on Hilbert space H, and & (p)
UpUT for any p € D(H). Then & is a trace-preserving super-operator.

(2) Let {M,,} be a quantum measurement on H. For each m, we define &, (p) =
M,,pM}. for any p € D(H). Then &, is a super-operator; which is not necessar-
ily trace-preserving. If the state of the system immediately before the measurement is
p, then the probability of obtaining measurement result m is

p(m) = tr(gm(p))v (D

and the state of the system immediately after the measurement is

Em(p)/tr(Em(p))-

(3) Asin (2), let {M,,} be a quantum measurement on H. If £ is given by this measure-
ment, with the result of the measurement unknown, i.e.,

Elp) = Z MmpMjn

foreach p € D(H), then & is a trace-preserving super-operator.
The following theorem gives two elegant representations of super-operators.

LEMMA 2.1. ([15], Section 8.2.3; Theorem 8.1) The following three statements are
equivalent:
(1) & is a super-operator on Hilbert space H;
(2) (System-environment model) There are an environment system E with state space H g,
and a unitary transformation U and a projector P on H ® H g such that

E(p) = trp[PU(p @ leo)(eo U P]

forany p € D(H), where {|e)} is an orthonormal basis of Hg, and trg/(+) is defined
by

tre(o) =Y (exloler)
k
foranyo € D(H® Hg);
(3) (Kraus operator-sum representation) There exists a set of operators {E;} on H such
that Y, E1E; C I and

Elp) = Z EipE]

for all density operators p € D(H), where T stands for the Lowner order; that is,
A C Bifand only if B — A is a positive operator. We often say that £ is represented
by the set { E;} of operators, or { E;} are operation elements giving rise to € when £
is given by the above equation.
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2.6 Diamond distance between super-operators

We shall need a distance between super-operators in defining approximate bisimulation be-
tween quantum processes. We choose to use a natural extension of trace distance between
mixed quantum states. For any positive operator A, if A = . \;|i)(i|, \; > 0 for all 4, is
a spectral decomposition of A, then we define

VA=3" /Al

Furthermore, for any operator A, we define |A| = v AT A. One of the most popular metrics
measuring how close two quantum states are, used by the quantum information community,
is trace distance. For any p, o € D(H), their trace distance is defined to be

1
D(p,0) = §tr|p —ol.

D(p, o) quantifies the distinguishability between mixed states p and o. The following
property of trace distance is needed in the sequel.

LEMMA 2.2. ([15], Theorem 9.2) If £ is a trace-preserving super-operator on 'H, then
D(&(p),£(0)) < D(p,0)
forany p,o € D(H).

The notion of trace distance can be extended to the case of super-operators in a natural
way [10]. For any super-operators &1, £; on H, their diamond trace distance is defined to
be

De(€1,E2) = sup{D((&1 @ Iw ) (p), (E2 @ T ) (p)) : p € D(H R H')}

where H' ranges over all finite-dimensional Hilbert spaces. Do (&1, E>) characterizes the
maximal probability that the outputs of £; and & can be distinguished for the same input
where auxiliary systems are allowed.

3. SYNTAX AND OPERATIONAL SEMANTICS
3.1 Syntax

Let Chan be the set of names for quantum channels, and let Var be the set of quantum
variables. It is assumed that Var is a countably infinite set. We shall use meta-variables
¢, d, ... to range over Chan and x, y, z, ... to range over Var. Let 7 be the name of silent
action.

For each quantum variable z € Var, imagine that we have a quantum system named by
x. Let H, be a finite-dimensional complex Hilbert space, which is the state space of the
x—system. For any x,y € Var, if H, = H,, then it is said that = and y have the same
type. Imagine further that there is a big quantum system composed of all x—systems,
z € Var, in which all of our quantum processes live. We call this composed system the
environment of our calculus. Put

Hx = Q) He

zeX

for any X C Var. Then H = Hy 4, is the state space of the environment. Note that H is
a countably infinite-dimensional Hilbert space.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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We assume a set of process constant schemes, ranged over by meta-variables A, B, ....
For each process constant A, a nonnegative arity ar(A) is assigned toit. Let & = 1, ..., Zap(4)
be a tuple of distinct quantum variables. Then A(Z) is called a process constant.

We write P for the set of quantum processes, and we write fv(P) for the set of free
quantum variables in P for each quantum process P € P. Now we are ready to present
the syntax of qCCS.

DEFINITION 3.1. Quantum processes are defined inductively by the following forma-
tion rules:

(1) each process constant A(T) is in P and fv(A(T)) = {Z};

(2) nil € P and fo(nil) = (;

3 if P e P, thent.P € Pand fo(r.P) = fu(P);

“4) if P € P, X is a finite subset of Var, and &€ is a super-operator on Hx, then
E[X].P € Pand fv(E[X].P) = fo(P)UX;

(5) if P € P, thenctx.P € P, and fv(c?x.P) = fu(P) — {z};

(6) if PePandx ¢ fu(P), then clz.P € P, and fv(clx.P) = fo(P) U {x};

(7) if P,Q € P, then P+ Q € P and fv(P + Q) = fu(P)U fv(Q);

8 if P,Q € P and fv(P) N fv(Q) = 0, then P|Q € P and fv(P|Q) = fv(P)U
fo(Q);

(9) if P € Pand L C Chan, then P\L € P and fv(P\L) = fv(P).

Using the standard BNF grammar the syntax of qCCS can be summarized as follows:
P .= A()|nil|7.P| E[X].P|c?x.P|clx.P| P+ P|P||P|P\L.
It is similar to the syntax of classical CCS, and the only differences between them are:

— Clause 4 in the above definition allows us to perform quantum operations on some
involved systems;

— Condition = ¢ fv(P) in clause 6 and condition fv(P) N fv(Q) = @ in clause 8
are required due to the well-known fact that unknown quantum information cannot be
perfectly cloned [18].

It is worth noting that these conditions force us to assign a set of free quantum variables
to each process constant in advance. Quantum operations described in clause 4 may be
thought of as constructs for sequential quantum computation. There are also constructs for
sequential computation in the value-passing CCS, but they are not explicitly given. There
such constructs are implicitly assumed in value expressions (see [13], page 55) so that one
can focus his attention on examining communication behaviors between processes. How-
ever, we explicitly present the constructs for sequential quantum computation in the syntax
of qCCS, and it is one of our main purposes to observe interaction between sequential
quantum computation and communication of quantum information.

There are two kinds of binding in our language for quantum processes: the restriction
\ L binds all channel names in L, and the input prefix ¢?z binds quantum variable x. The
symbol =, will be used to denote alpha-convertibility on processes defined by replacing
bound quantum variables in the standard way.

For each process constant scheme A, a defining equation of the form

A Y p

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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is assumed, where P is a process with fv(P) C {Z}. Recursive definition in qCCS is
different from that in classical CCS in some intricate way. For example, in qCCS,

A(x) = cle. A(x)
is not allowed to be the defining equation of process constant scheme A. In fact, if €
fu(A(z)) then clz.A(x) is not a process, and if z ¢ fv(A(z)) then fo(clx.A(x)) &
fv(A(z)). However,

Aly) = clx.clz. Aly)

is a legitimate defining equation of A.

It is well-known that in the pi-calculus one has to treat substitution of names very care-
fully. However, we need to treat substitution of quantum variables in an even more careful
way due to the fact that arbitrary cloning of quantum information is prohibited [18], [2]. In
particular, we have:

DEFINITION 3.2. A substitution of quantum variables is a one-to-one mapping f from
Var into itself satisfying

(1) x and f(x) have the same type for all x € Var; and

) flvar—x = Idvar—x for some finite subset X of Var, where Idy stands for the
identity function on'Y .

It is common that two different classical variables can be substituted by the same vari-
able. But it is not the case in qCCS because a substitution is required to be a bijection. Such
a requirement comes reasonably from our intention that different variables are references
to different quantum systems. Since quantum variable f(z) will be used to substitute quan-
tum variable z, it is reasonable to require that the z—system and the f(x)—system have
the same state space. This is exactly condition (1) in the above definition.

Let P € P and f be a substitution. Then P f denotes the process obtained from P by
simultaneously substituting f(z) for each free occurrence of x in P for all z. To give a
precise definition of P f, we need to introduce the notion of application of a substitution
on a super-operator. If f is a one-to-one mapping from Var into itself, then f induces
naturally an isomorphism from H onto H (v, Which is a subspace of ‘H. For simplicity,
itis also denoted by f. Precisely, the isomorphism f : H — H (v 4, is defined as follows:

zeVar zeVar

for any |¢,) € H., © € Var. Applying f to a state which is not a tensor product of
states in H, (z € Var) may be carried out simply by linearity. Furthermore, it induces a
bijection f : D(H) — D(H¢(var)). Forany p =3, pilwi){pi| € D(H), where [p;) € H
for all 7, we have:

flp) = Zpi|f(90i)><f(90i)|-

In particular, if f(x) = y, f(y) = « and f(z) = z for all z # x,y, then f(p) is often
written as p{y/z}.
For any super-operator & on H x, we define super-operator £ f on H(x) by

Ef =flxo&o(flx)7",
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where f|x is the restriction of f on X, which is obviously a bijection from X onto f(X).

D(Hx) - D(Hy)

fl Lf
D(Hsx) - PHyex)

With the above preliminaries, now we are able to define substitution of quantum vari-
ables in a quantum process.

DEFINITION 3.3. For any P € P and substitution f, Pf is defined recursively as
follows:

(1) if P is a process constant A(x1, ..., Ty,) then
Pf = A(f(xl)v "'7f(xn));

(2) if P = nil then Pf = nil;

3) ifP=r1.P then Pf=1.P'f;

4) if P =E[X].P then Pf = (£f)[f(X)].P'f;

(5) if P = c?x.P' then Pf = c?y.P'{y/x}f,, wherey ¢ fu(c?x.P")U fv(P'f), and
[y is the substitution with f,(y) = vy, f,(f~*(y)) = f(y) and f,(z) = f(2) for all
2 #y, [ )

(6) if P=clz.P' then Pf = clf(x).P'f;

(7) f P=P +Pythen Pf = P f+ P f;

(8) if P = P\||Py then Pf = P\ f||Paf;

(9) if P=P'\Lthen Pf = P'f\L.

Note that in clause 4 a corresponding modification on super-operator £ is made when
substituting quantum variables in X. In addition, the requirement that f is one-to-one

becomes vital when we consider substitution of output prefix in clauses 6 and of parallel
composition in clause 8; for example, if f(z) = f(y) = , and

Py = clz.dly.nil, P, = clz.nil||dly.nil,
then the following two expressions
P, f =clz.dznil, Pf = clznil||dznil

are not processes.

If (Pf)f~! =, P; thatis, there is no variable conflict where f(z) € fv(P) — {z} for
some z € fv(P), then Pf is said to be well-defined. In what follows we always assume
that P f is well-defined whenever it occurs.

LetZ =x1,...,xp and § = y1, ..., yn. If f(2;) = y; (1 <i < n), we write P{y/Z} or
P{yl/mla ayn/xn} for Pf
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3.2 Operational Semantics

The operational semantics of qCCS will be given by transitions between configurations,
labeled by actions. A configuration is defined to be a pair (P, p) where P € P is a
process, and p € D(H) specifies the current state of the environment. Intuitively, p is
an instantiation (or valuation) of quantum variables. Instantiations of classical variables
can be made independently from each other, but quantum systems represented by different
variables may be correlated because p is allowed to be an entangled state. The set of
configurations is written Con.
We set

Act = {1} U Actop U Actcom

for the set of actions, where

Actop = {€]X] : X is a finite subset of Var and € is a super — operator on Hx }

is the set of quantum operations, and

Acteom = {c?z,cla : ¢ € Chan and © € Var}

is the set of communication actions, including inputs and outputs. The set Act will be
ranged over by meta-variables «, 3, .... We need the following notations for actions:

— For each o € Act, we use cn(a) to stand for the channel name in action «; that is,
en(c?x) = en(clz) = ¢, and en(7) and cn(E]X]) are not defined.

— We write fv(a) for the set of free variables in «; that is, fv(clz) = {z}, fv(E[X]) =
X, fu(r) = fo(c?z) = 0.

— We define bu(a) to be the bound variable in «; that is, bv(c?x) = x, and bu(7),
bv(E[X]) and bv(clz) are not defined.

To present the operational semantics of qCCS, we need one more auxiliary notation. For
any X C Var and super-operator £ on H x, the cylindric extension of £ on H is defined
to be

def
Ex = E® IHVH,T—X 2)
where 73, ., is the identity operator on Hy4,—x. In what follows we always assume
that X is a finite subset of Var and £ is a super-operator on H x whenever Ex is encoun-
tered.

Then the operational semantics of qCCS is given as a transition system (Con, Act, —),

where the transition relation — is defined by the following rules:
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14 . Mingsheng Ying et al.

Taw: ——
(.P,p) = (P, p)
Oper :
E[X).P,p) "B (P ex(p))
Input : y ¢ fu(c?z.P)
(c?2.P,p) ¥ (P{y/x},p)
Output :

(clz.P, p) =5 (P, p)

Choice : (P.p) = &Pl’ P)
(P+Q,p) = (P0)

It : 22 l,,i o) g o)
(PIQ,p) = (P'llQ.p")
(P.p) = (P'.p))
(PllQ, p) = (P'lQ, p")

Intl2 : « is not an input

(Pp) 5 (P o) (Q,0) % (@, p)
(PIQ.p) = (P'IQ"p)

Comm :

(P =P
RS P\Lig) & (PLy EE

Def : <P{y/z} p> <P, / /> A(iﬂ) d;f P
(A@), p) = (P p")

The symmetric forms of the Choice, Intll, Intl2 and Comm rules are omitted in the
above table.
The operator Ex () in the Oper rule was defined by Eq. (2). In the output transition

(clz.P,p) <% (P, p), the x—system is sent out through channel c. Note that the current
state of the x—system is specified in p. But p is not necessary to be a separable state, and
it is possible that the x—system is entangled with the y—system for some y € Var — {z}.
Moreover, the entanglement between the x—system and the y— systems (y ¢ Var—{x})is

preserved after the action ¢!z. The input transition (c?z.P, p) =¥ (P{y/x}, p) means that
the y—system is received from channel c and then it is put into the (free) occurrences of x
in P (There may be more than one free occurrences of a single variable = in P because it is
not required that fo(P) N fv(Q) = @ in sum P + Q). It should be noted that in ¢?z. P the
variable z is bound and it does not represent concretely the x—system. Instead it is merely
a reference to the place where the received system will go. Thus, c¢?x. P can perform action
c?y with y # z. The side condition y ¢ fv(c?z.P) for the input transition is obviously
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to avoid variable name conflict, and it also makes that P{y/x} is well-defined. During
performing both the input and output actions, the state of the environment is not changed.
Passing quantum systems happens in a communication described by the Comm rule, but it
is realized in a “call-by-name”’scheme and does not change the state of the environment.

From Definition 3.1(8) we note that it is required that fv(P")N fv(Q’) = 0 to guarantee
that the Comm rule is reasonable. However, we do not need to impose this condition into
the Comm rule because it is a consequence of the other rules. The verification of this
condition is postponed to the end of Lemma 3.2. The same happens to the Intl1 and Intl2
rules.

3.3 Examples

To illustrate the transition rules introduced in the last subsection, we give some simple
examples.

In the first example, we shall use the language of qCCS to describe how quantum sys-
tems are passed between processes and how a unitary transformation or a quantum mea-
surement is performed on some quantum systems. The most interesting thing is to observe
how entangled systems behave during computation and communication.

EXAMPLE 3.1. Let
P =c.P], P,=clz.P)
and P = (Py||P2)\c, where x ¢ fv(Py). Then for any p, the only possible transition of P
is
-
(P, p) = ((Pi{z/y}IP;)\c, p).-
Note that in this transition the x—system is passed from Py to P) but the state p of the
environment is not changed. This is reasonable because p does not contain any position
information of the quantum systems under consideration; more precisely, in a configuration

(Q, p), for all quantum variables x, p only describes the state of the x—system, but it does
not indicate any subprocess of Q) by which the x—system is possessed.

If
Q1 = c?y.Hyl.Q1, Q= (Q1[|P2)\c,
and p = 10),(0| ® p" where p’ € D(Hv qr—{2}) and x ¢ fv(Q1), then

(Q.p) = ((H[z]-Q\ {z/y}I|IP3)\c, p)

Qe /P \e, [4)a(+] @ ).

At the beginning of the transition the state of the x—system is |0). Then the x—system is
passed from P, to Q1 and the Hadamard transformation is performed on it at Q1. The
state of the x—system becomes |+) after the transition.

Suppose that

Ry = c?y.CNOT|y, z|.R]

and R = (R1||P2)\c and o = |+).(+| ® |0).(0| ® o’ where o' € D(Hyqr—{s,-}) and
x ¢ fu(Ry). Then

(R,0) = (CNOTz, 2. Ri{z/y}||P3)\c, o)

R (R Lo/ gH PO\, Boo) = o] @ o).
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The x—system is passed from Py to Ry, and then the CNOT operator is applied to it
and the z—system together. It is worth noting that the state of the xz—system is separable
before the transition, but an entanglement between the x—system and the z—system is
created at the end of the transition.

Let

S1 = c?y.CNOTy, z]. Mo 1[2].5]

and S = (51| P2)\c, where M 1 is the operation generated by the measurement of single
qubit in the computational basis |0), |1), with the measurement result unknown; that is,
Mo1(p) = PopPo + PipP; for each p € D(Hz), where Py = |0)(0] and P, = |1)(1].
Then

(S,0) = ((CNOTz, 2] Moa[2].S{z/y} || P3)\c, o)
CNOT|z,z]
= {((Moal2]-Si{z/y}HIP2)\e, [Boo)a= (Bool ® o)

Mo, 1]z] 1

=St/ yHIP) e, 5 (100)0= (00] + 1), (11]) @ o).
In the last transition the measurement in computational basis |0), |1) is performed on the
z—system. We can see that the x—system and the z—system are always in the same state
in the last configuration. This is because they are entangled before the measurement.

The communication channels in qCCS (named by elements of C'han) are implicitly as-
sumed to be noiseless. However, the major part of quantum information theory is devoted
to solve the problem of transmitting reliably information through noisy quantum channels
(see [15], Chapter 12). The next example shows how we can formally describe noisy quan-
tum channels in qCCS by combining noiseless communications and quantum operations
on the passed systems.

EXAMPLE 3.2. Quantum noisy channel. We imagine a simple scenario where Alice
sends quantum information to Bob through a quantum noisy channel. Usually, a quantum
noisy channel is represented by a super-operator € (see Chapters 8 and 12 of [15]). Thus,
Alice and Bob may be described as processes:

P=clz.P, Q=c?2.Q

respectively, and the channel is described as a nullary process constant scheme C whose
defining equation is

o c1?7y.Elyl.caly.C.
Put S = (P||C||Q)\{c1,c2}. If information that Alice wants to send is expressed by a
quantum state p of the x—system, then for any p' € D(Hy qr—{}), we have:
(8,08 ) 5 (P|El) cala-ClQ\erseah p @ )
L(Perla.CIQNer, 2} Ep) @)
S A{(P'ClQ{z/z3)\ e, e2}, E(p) @ p).

Note that fv(C) does not contain y; otherwise C'is not a process. Thus, C{x/y} = C.
Moreover, suppose that a system-environment model of £ is given as in Lemma 2.1(2).
Let £y, Ep and &y, be super-operators on H, @ H and be defined as follows: £y (o) =
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(8", p @ leo)leol ® p") = (P'l|Eu[{w, B}.Ep[{z, E}].Eurp [{, BY].cola.C"(E)
I@)\{er, ca} p @ eo){eo| @ p7)

B (piep e, BY.Eurp {2, EY].cala.C"(E)|Q)\{e1, e2 ),
U(p ® leo){eo)UT @ p”) 3)
I (P, [, Y2l (B) | Qe c2}, PU(p @ leo) (eo)UTP @ ")

Ers B (Pl eyl O (B)|Q)\fex, ea}, £(p) @ leo) (eo] @ p")

S {(PIC"(B)Q {=/2)\{e1, 2}, £(p) @ |eo) (o] @ p").

UoUT, Ep(o) = PoP, and
Eirp () = ) _(erlolex) © leo)(eol,

k

respectively, for all o € D(H, ® Hg). We define process constant scheme C' by

C'(E) ™ e1ry.ul{y, BY).Ep[{y, EY]-Eirnl{y, EY.c2ly.C'(E),

andput S" = (P||C'(E)||Q)\{c1, c2}. Then forall p € D(H,) and p" € D(Hy ar—{a,5})s
the transitions of S’ are displayed in Eq. (3).

Quantum copying has attracted considerably much interest in the community of quantum
information. The aim is to find some physical devices, called quantum-copying machines,
which can produce two copies of a unknown input quantum state at their output. However,
Wootters and Zurek [18] and Dieks [2] proved the no-cloning theorem which asserts that
such an ideal quantum-copying machine does not exist. Now the no-cloning is widely
recognized as one of the essential differences between classical and quantum information.
Although there is not a perfect cloning machine, the no-cloning theorem does not forbid
imperfect copying of arbitrary quantum states. Indeed, an approximate quantum copier was
first designed by Buzek and Hillery [1]. The following example gives a formal description
of it in the language of qCCS.

EXAMPLE 3.3. Approximate quantum copier. Suppose that an agent () wants to copy
a (unknown) quantum state, @) sends the state to a copier P through channel ¢, and P
receives it and puts it at place y (the original mode). First, P has to ask for a new place
from another agent R as the copy mode. Then P performs a copying operation on the
original and copy modes together, which is represented by a unitary transformation U,
independent of the input state. Finally, P will send two (approximate) copies of the original
state back to Q) through channel c. So, P, Q), R and the whole system S may be described
as follows:

P =c?y.d?2.Uly, z].cly.clz.P, Q= clz.c?u.c?v.Q’, R = dlzg.nil,

and S = (P||Q||R)\{c,d}. Note that P is a nullary process constant scheme and y, z ¢
fo(P).

Let p = “P>1<50‘ ® |0>I0 <0‘ ® o, where 0 € D(HVar—{w,xo})r
copied, and the initial state of the copy mode is assumed to be

©) is the state to be
0). Then the copying

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.



18 . Mingsheng Ying et al.

process is described by the following transitions:
(S, p) 5 ((d?2.Ulz, 2].clz.clz. P c?u.c?v.Q'|| R)\{c, d}, p)
((Ulz, zg].clz.clzo.Pllc?u.c?v.Q'||nil)\{c, d}, p)

1A

-

fz.gol ((clz.clzo.P||c?u.c?v.Q'|nil)\{c, d}, p)
= ((clwo.Pl|c?v.Q' {z/u}|nil)\{c, d}, ')
= (P|Q{z/u}{wo/v}[ni)\{c,d}, p'),

where it is supposed that U 1) 210} ey = |9')al@)a and o/ = ) ('] @ ') (] @10
The Wootters-Zurek-Dieks no-cloning theorem [18], [2] excludes the possibility that for
all |o) € Hy, |¢') = |p). But it is shown by Buzek and Hillery [1] that there exists a
(universal) copier P which approximately copies the input state |@) such that the quality
of the output state |¢'), measured by the Hilbert-Schmidt norm of the difference between
|p) and |¢"), does not depend on |p).

3.4 Properties of Transitions

We now present some basic properties of the transition relation defined in Section 3.2.
Their proofs can be carried out by induction on the depth of inference. Some of them need
very careful analysis, we put them into the Appendix to improve readability of the paper.
First, we observe how does the environment of a configuration change in a transition.
£[X]
LEMMA 3.1. (1) If(P,p) — (P',p'), then

(@) p'=Ex(p); and
b (P,o) "BV (P ex(0)) holds for all o € D(H).
() If (P, p) > (P, p') and o is not of the form [ X, then
(@) p=p;and
(b) (P,0) = (P',0) holds for all o € D(H). Thus, we can simply write P = P’

Next we see how are the variables in an action related to the free variables of a process
performing this action and those of the process immediately after it.

LEMMA 3.2. If (P,p) = (P', p'), then
() fo(a) C fo(P)— fu(P'); and
@) fu(P') € fo(P)U{bv(a)}.

This lemma enables us to verify that the Intl1, Intl2 and Comm rules are well-defined.
We only consider Comm for instance: if (P, p) i (P, p) and (Q, p) % (@', p), then
using the above lemma we obtain fu(P’) C fu(P) U {z}, fv(Q") C fv(Q) and z ¢
fu(Q"). If P||Q € P, this obviously leads to fv(P’) N fv(Q') = 0 because fv(P) N
fv(Q) = (. The other two rules can be dealt with in a similar way.

The next lemma shows that the variable in an input can be changed in a transition pro-
vided a corresponding modification of the process after the transition is made.

LEMMA 3.3. If (P, p) oy (P',p)andy ¢ fu(P), then (P,p) Y (P", p) for some
P’ =, P{y/z}.
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The following two lemmas carefully examine interference of substitution and transition.
Let f be a substitution. Then we define its extension on actions by f(7) = 7, f(E[X]) =

EfIf(X))], f(c?x) = c?x, and f(clx) = ! f(x).

LEMMA 3.4. If{(P.p) % (P', p') and f(bo(a)) = bu(a), then (P, (o)) "5 (P". f(¢/))

for some P" =, P'f.
LEMMA 3.5. If (Pf, f(p)) = (Q,0) and f(bv(a)) = bu(v), then for some (3, P’ and
PP ) B AP ), Q=0 P'f o = f(p') and a = f(5).
Finally, we exhibit a certain invariance of transitions under ae—conversion.
LEMMA 3.6. Let P, =, P>. Then
@)} if/(Pl, p) = (P}, p') and « is not an input, then (Py, p) = (P4, p') for some Py =,
Pl
@) if (P1,p) (D], p), then for any y & fo(Pa), (P2, p) <Y (P}, p) for some P} =,
Pi{y/x}.
4. STRONG BISIMULATIONS
4.1 Basic Definitions

We first introduce the notion of strong bisimulation on configurations.

DEFINITION 4.1. A symmetric relation R C Con x Con is called a strong bisimula-
tion if for any (P, p), (Q,0) € Con, (P, pYR(Q, o) implies,

(I) whenever (P, p) < (P',p') and  is not an input, then for some Q' and o', (Q, o) =
(Q',0") and (P', p')YR(Q', 0");

(2) whenever (P, p) <y (P',p)and x ¢ fv(P)U fu(Q), then for some Q', (Q, o) <y
(Q',0) and for all y ¢ fo(P')U fo(Q') — {z}, (P{y/x}, ) R(Q{y/x}, 0).

It should be noted that in Clause 2 we require y ¢ fv(P’') U fo(Q') — {z}. If we
would not put this requirement, then two previously different quantum states may become
the same state after substitution {y/z}. This is forbidden by the no-cloning theorem of
quantum information.

Then we are able to define strong bisimilarity between configurations in a familiar way.

DEFINITION 4.2. For any (P, p),{Q,0) € Con, we say that (P, p) and {(Q,0) are
strongly bisimilar, written (P, p) ~ (Q, o), if (P, p)R{(Q, o) for some strong bisimulation
R; that is, strong bisimilarity on Con is the greatest strong bisimulation:

~= U{R : R is a strong bisimulation}.

Now strong bisimilarity between processes may be defined by comparing two processes
in the same environment.

DEFINITION 4.3. For any quantum processes P,QQ € P, we say that P and Q) are
strongly bisimilar, written P ~ Q, if (P, p) ~ (Q, p) for all p € D(H).

The following lemma gives a recursive characterization of strong bisimilarity between
configurations, and it is useful in establishing strong bisimilarity between some processes.
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LEMMA 4.1. Forany (P, p),(Q,0) € Con, (P, p) ~ (Q,0) if and only if,
(I) whenever (P, p) = (P',p') and o is not an input, then for some Q' and o', (Q,0) =
(Q,0") and (P', p') ~(Q',0");
(2) whenever (P, p) ik (P’ p)y and x ¢ fo(P)U fv(Q), then for some Q', (Q,0) g
(Q',0) and forally & fo(P')U fo(Q') — {=z}, (P{y/x}, p) ~ (Q{y/x},0),
and the symmetric forms of 1 and 2.

Proof. Similar to the proof of Proposition 4.4 in [13]. O

In the remainder of this section we are going to present some fundamental properties of
strong bisimilarity. First, we show that strong bisimilarity is preserved by a—conversion.

PROPOSITION 4.1. If P| =, P, then P; ~ P;.
Proof. Tt is easy to show that
R ={((P1,p), (P2, p)) : P =0 Pa}

is a strong bisimulation by using Lemma 3.6. O

4.2 Monoid Laws, Expansion Law and Congruence

The monoid laws and the static laws in classical CCS can be easily generalized to qCCS.
PROPOSITION 4.2. Forany P,Q,R € P, and K, L C Chan, we have:

() P+Q~Q+PF;
(2) P+(Q+R)~ (P+Q)+R;
3 P+P~P
(4) P+ nil ~ P;
) PlQ~Q|P;
©) PIQIR) ~ (PIQ)|R;
(7) Plnil ~ P;
(8) P\L ~ Pifcn(P)N L =0 where cn(P) is the set of free channel names in P;
9 (P\E)\L ~P\(K UL)
Proof. The items (1)-(4) may be proved by using Lemma 4.1, and the items (5)-(9) may

be proved by constructing appropriate strong bisimulation. Here, we only prove (6) as an
example. Put

R ={((PI(QIR), p), (PIQ)|R, p)) : P,Q, R € P and p € D(H)}

It suffices to show that R is a strong bisimulation. Suppose that

(PI(QIR), p) = (S,0"). “)
We only consider the following two cases, and the others are easy or similar.

Case 1. The transition Eq. (4) is derived from (Q, p) oy (Q', p) and (R, p) 4 (R, p)
by Comm. Then o = 7, p’ = pand S = P||(Q’||R’). It follows from Lemma 3.2 that
x € fu(R). This leads to z ¢ fo(P||Q) = fu(P) U fu(Q) because (P|Q)||R € P.
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clx

Consequently, we may apply the Intll rule to assert that (P||Q,p) — (P||Q’,p), and
furthermore by the Comm rule we obtain

(PIQ)IR. p) = ((PIIQIE', p).

Now it suffices to note that (S, p)R{(P||Q")|| R, p)-
Case 2. o = c?z,

z ¢ fo(PI(QIR) U fo((PIQ)[R) = fo(P)U fu(Q) U fo(R)

and the transition Eq. (4) is derived from (P, p) oy (P’ p) by Intll. Then p’ = pand S =

P'[(Q||R). Since x ¢ fv(Q), it follows from the Intll rule that (P||Q, p) <y (P'|Q, p).
We also have x ¢ fu(R). Then using the Intll rule once again we obtain

(PIQIR, p) = (P|Q)IR, p).

Finally, we note that for each

y & fo(PII(QIIR)) U fu((P'IQ)R) — {=},
S{y/z} = Py/=}(QIIR),
(PlIIR){y/x} = (P{y/=}Q)IR,

and it follows that

(S{y/x}, NRA(PIQ)IR){y/z}, p). O

PROPOSITION 4.3. (Expansion law) For any P,(Q € P, we have:
(PIQ\L ~ > {a.(P'|Q\L: P P and en(a) ¢ L}
+ > {a(PIIQ\L: Q % Q" and en(a) ¢ L}
3 (R (PIQNL: P P and QB Q)
or P25 P and Q X Q'}.
Proof. Write S for the process in the right-hand side. Then we can show that ((P||Q)\L, p) ~

(S, p) forall p € D(H) in a way similar to that in classical CCS (see [13], Proposition 4.9).
O

The following lemma indicates that strong bisimilarity is preserved by substitution. Its
proof requires careful manipulation of variables, and it is put into the Appendix for read-
ability of the paper.

LEMMA 4.2. For any P,Q € P and for any substitution f, P ~ Q if and only if
Pf~Qf.

Now we are ready to show one of the major results in this paper that strong bisimi-
larity is a congruence relation with respect to all combinators in gqCCS. It is well-known
that congruence is a key property in all classical process algebras. However, to our best
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knowledge, full congruence has not been established for quantum processes in the previ-
ous works. For example, Lalire [11] introduced probabilistic rooted branching bisimilarity
between quantum processes in QPAlg and proved that it is an equivalence relation and pre-
served by variable declaration, action prefix, nondeterministic choice, probabilistic choice,
conditional choice and restriction. But she also gave a counterexample to show that prob-
abilistic rooted branching (strong) bisimilarity is not preserved by parallel composition.
In [4], a notion of probabilistic (strong/weak) bisimilarity between processes in a quantum
extension of classical value-passing CCS was proposed by the authors of this paper. Again,
there are some evidences showing that in general such a probabilistic bisimilarity might not
be preserved by parallel composition. If we write ~,, for this probabilistic bisimilarity, then
what was achieved in [4] is that P ~,, @) implies P||R ~, Q|| R when P and () are free of
quantum input, or R is free of unitary transformation and measurement; and the condition
on P, () and R is very restrictive. These facts seems to hint that parallel composition can-
not live well in the quantum world where entanglement is present and cloning is forbidden.
Parallel composition is definitely the most important combinator in any process algebra.
Thus, understanding the behavior of parallel composition of quantum processes should be
one of the key issues in designing a quantum process algebra. As pointed out in the Intro-
duction, in order to have a clear understanding of quantum parallel composition, we decide
to make a sharp cleanup in this paper, excluding classical computation and communication
from the previous quantum process algebras and focusing our attention on pure quantum
processes. This enables us to define a bisimilarity between quantum processes which is
preserved by parallel composition and thus enjoys full congruence.

THEOREM 4.1. (1) If A ™Y P then A ~ P.

) If P ~ Q, then we have:
(@) 7.P ~T1.QQ;
(b) E[X].P~E[X].Q;
(¢) clz.P ~ clz.Q;
(d) c?z.P~ c?z.Q;
() P+R~Q+R;
(N PR~ Q|R;
(g) P\L ~Q\L.

Proof. The proofs of (1), (2.a)-(2.c) and (2.e) are routine applications of Lemma 4.1,
and (2.d) may be proved by using Lemmas 4.1 and 4.2. For (2.g), we only need to show
that

R ={((P\L, p), (Q\L,0)) : (P,p) ~(Q,0)}

is a strong bisimulation, and the routine details are omitted.

The proof of (2.f) is not a straightforward generalization of the proof for classical pro-
cesses, and it requires a new idea in constructing a strong bisimulation equating P|| R and
Q||R. The major difficulty arises from interference between sequential quantum compu-
tation and communicating quantum systems. The key technique is inserting a properly
chosen quantum operation into an existing sequence of quantum operations. Furthermore,
the proof requires a very careful analysis of interplay between quantum variables, sequen-
tial applications of super-operators, and communication of quantum systems as well as
subtle treatment of substitution of quantum variables. We define R to be a binary relation
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between configurations, consisting of the pairs:
n n n—1 n—1 (1) (1 0)
<<P||R ‘7: )an)f}(/n 1)5( nf ) fyl)gxl)fl(/o ( )>’
n n—1 n—1 1 1 0
QIR Fy e = Vel ™) A e 7Y (o)),

nl

wheren > 0, R € P, X; (1 <i <n)and Y (0 < i < n) are finite subsets of Var, £

is a super-operator on Hy, foreach 1 < 7 < n, and .7-'3(/? is a super-operator on Hy, for
each0 <7 <n,and

(PEQERT Q) () ~ (Q.EQIELT 60 (o)),

The idea behind the definition of R is that we can insert an arbitrary quantum operation

5(7,+1

.7-'1(/? between two existing previously quantum operation ES) and for any 1 <

1 < n — 1, and we can also insert an arbitrary quantum operation .7:1(,”) after the last
operation 521) and insert _7-'3(,2) before the first operation £ )((11) The technique of insertion
is unnecessary in the classical value-passing CCS from which sequential computation is
abstracted by assuming value expressions (see [13], page 55). However, it is indispensable
in qCCS where one has to consider interference between sequential quantum computation
and communicating quantum systems.

For simplicity, we write A = £{' )é‘ﬁgl 11 .Sgcl) and

n n n—1 n—1 1 0
B= AYEI A VS AP,

If P ~ @, then for each p, (P, p) ~ (Q, p), and it implies <P||R, PIR(Q| R, p) by taking

n = 0and }")(,2 ) — IHYO in BB. Therefore, it suffices to show that R is a strong bisimulation.
To this end, suppose that (P, A(p)) ~ (Q, A(c)) and

(P||R,B(p)) = (S, p'). Q)

Our aim is to find a transition of (Q|| R, B(p)) which matches transition Eq. (5) according
to Definition 4.1. We consider the following four cases:

Case l. @ = 7. We have p’ = B(p), and this case is divided into the following four
subcases:

Subcase 1.1. The transition (5) is derived by Intl2 from (P B(p)) = (P',B(p)). Then
S = P'||R. By Lemma 3.1 we obtain (P, A(p)) = (P’, A(p)). Since (P A(p)) ~
(Q, A(0)), itholds that (Q, A(0)) = (Q', A(c)) for some Q’ with (P, A(p)) ~ (Q', A(o)).
Applying Lemma 3.1 once again we have (Q, B(c)) = (Q’, B(o)), and the Intl2 rule al-
lows us to assert that (Q|| R, B(c)) = (Q'|| R, B(c)). Itis easy to see that (S, oY R(Q'|| R, B(c))
from the definition of R.

Subcase 1.2. The transition (5) is derived by Intl2 from (R, B(p)) = (R', B(p)). Then
S = P||R’, and from Lemma 3.1 and the Intl2 rule it follows that (R, B(c)) = (R', B(c))
and (Q|| R, B(0)) = (Q||R’, B(c)). In addition, we have (S, p'YR(Q| R', B(c)) because
(P, A(p)) ~ (@, A(0)).

Subcase 1.3. The transition (5) is derived by Comm from (P, B(p)) — &y (P’,B(p))
and (R, B(p)) o (R',B(p)). First, we have (P, A(p)) b (P', A(p)) and (R, B( ) = %
(R',B(0)) by using Lemma 3.1. With Lemma 3.2 we see « € fv(R). Note that fv(P) N
Fo(R) = Fo(Q)N fo(R) = 0. Thus, = ¢ fo(P)U fu(Q). Since (P, A(p)) ~ (Q, A(0)),
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it follows that (Q, A(o)) oy (Q', A(c)) for some Q' with (P', A(p)) ~ (Q', A(c)). By
Lemma 3.1 and the Comm rule we obtain (Q, B(c)) g (Q',B(0)) and (Q||R, B(o)) =
(Q'||R’, B(c)). Moreover, it holds that (S, p')R(Q'||R’, B(0)).

Subcase 1.4. The transition (5) is derived by Comm from (P, B(p)) 2 (P’,B(p)) and

(R, B(p)) % (R, B(p)). Similar to Subcase 1.3.
Case 2. « = G[Z], where Z is a finite subset of Var, and G is a super-operator on H .
We have p’ = GzB(p), and this case is divided into the following two subcases:

Subcase 2.1. The transition (5) is derived by Intl2 from (P, B(p)) gLzl (P',GzB(p)).
Then S = P’||R. It follows from Lemma 3.1 that (P, A(p)) ] (P',GzA(p)), and
(@A) (@ G2A(0)) for some Q' with (P', Gz A(p)) ~ (Q',G2A(7)) because

(P, A(p)) ~ (Q,A(c)). Hence, using Lemma 3.1 once again we obtain (Q, B(o)) v

(Q',GzB(0)). Consequently, using the Intl2 rule leads to
GlZ]
(QIR,B(0)) = (Q|R,GzB(0)).

Comparing carefully Gz .4 and Gz B, we see that Gz BB results from inserting

f(n+1) :I'H :IHaf}(/z)vfé:jll)v,fﬁ(/i)vfﬁ(/g

Ynt1 Y41
at appropriate positions in Gz A, where Y, is an arbitrary finite subset of Var. This
implies (S, p")R(Q'|| R, G2B(0)).
Subcase 2.2. The transition (5) is derived by Intl2 from (R, B(p)) ol (R, GzB(p)).
Then S = P||R’, and (R, B(o)) <% (
Hence, it holds that

R’,GzB(0)) follows immediately by using Lemma 3.1.

g[7]
(QIR,B(a)) = (QIR',G2B(c)).
Let
ng)uz = (‘7:3(/:) ®IHZ—Y71) © (gZ ®IHYTL—Z)'
Then IC§Z )u  is a super-operator on Hy, uz, and Gz B is obtained by inserting appropriately
n (n—1 1 0

lcg"n)UZ’ fifn—l )’ e ‘7:3(/1)’ ‘7:3(/0)
in A. Now it follows that (S, p")R(Q|| R, GzB(o)) from (P, A(p)) ~ (Q, A(0)).

At the first glance, one may think that the full generality of 4 is not necessary because
in the above two subcases we only add a quantum operation at the beginning of a sequence
of quantum operations. However, this is not the case. It should be noted that our proof is
carried by induction on the depth of inference (5), and quantum operation inserted at the
beginning of a sequence will be moved to the middle of a lager sequence in the later steps.

Case 3. a = clz. We need to consider the following two subcases:

Subcase 3.1. The transition (5) is derived by Intl2 from (P, B(p)) % (P',B(p)). Simi-
lar to Subcase 1.1. '

Subcase 3.2. The transition (5) is derived by Intl2 from (R, B(p)) <5 (R’, B(p)). Simi-
lar to Subcase 1.2.

Case 4. aw = c?zx and

z ¢ fo(PIR)U fo(Q[R) = fo(P)U fu(Q) U fu(R).
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We have p’ = B(p), and this case is divided into the following two subcases:
Subcase 4.1. The transition (5) is derived by Intll from (P, B(p)) s (P’,B(p)). Then
S = P'||R, and using Lemma 3.1 we obtain (P, A(p)) &y (P', A(p)). From (P, A(p)) ~
(Q, A(o)) and z ¢ fo(P)U fu(Q), it follows that (@, . A(c)) oy (Q', A(0)) for some Q'
with forally ¢ fo(P') U fo(Q') — {z}, and
(P {y/2}, Alp)) ~ (Q' Ty}, Alo)).

Furthermore, we have (Q, B(0)) oy (@', B(0)) by using Lemma 3.1 once again. Note
that x ¢ fu(R). Thus, applying the Intll rule yields (Q| R, B(o)) oy (Q'||R, B(c)).
What remains is to verify that

(Pl R){z/=}, B(p)) RUQ'IIR){z/x}, B(o))
forall z ¢ fu(P'||R) U fv(Q'||R) — {z}. To this end, we only need to note that

(P'[R){z/x} = P'{z/x}|R{z/x},

(Q'[R){z/x} = Q{z/x}|R{z/x},
and 2 ¢ Fo(P|R) U fo(Q'|R) — {} implies = & fo(P") U fo(@) — {x}.
Subcase 4.2. The transition (5) is derived by Intll from (R, B(p)) &y (R',B(p)). Then
S = P||R/, and (R, B(0)) oy (R',B(0)) follows from Lemma 3.1. Consequently, we

may obtain (Q|| R, B(c)) ks (Q||R’,B(c)) by using the Intll rule, because = ¢ fv(Q).
So, we only need to show that

(PR y/=}, B(p))RUQIR ) {y/x}, B())
forally ¢ fu(P||R')U fo(Q||R') — {«}. Note that ¢ fv(P)U fv(Q). Thus, it holds

that (P||R'){y/x} = P||R'{y/x} and (Q|| R ){y/x} = Q||R'{y/x}, and the conclusion
follows immediately from the definition of R. O

4.3 Recursion

We now assume a set of process variable schemes, ranged over by X, Y, .... For each pro-
cess variable scheme X, a nonnegative arity ar(X) is assigned to it. If Z = 1, ..., o (x)
is a tuple of distinct quantum variables, X () is called a process variable.

Process expressions may be defined by adding the following clause into Definition 3.1
(and replacing the word “process”by the phrase “process expression’):

— each process variable X () is a process expression and fv(X(7)) = {Z}.

We use meta-variables E, F, ... to range over process expressions.

Suppose that E is a process expression, and {X;(Z;) : ¢ < m} is a family of process
variables. If { P; : ¢ < m} is a family of processes such that fo(P;) C {Z;} for all ¢ < m,
then we write
for the process obtained by replacing simultaneously X;{y;} in E with P;{y/z} for all
1< m.
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DEFINITION 4.4. Let E and F be process expressions containing at most process vari-
able schemes X; (i < m). If for all families {P;} of processes with fu(P;) C {Z;},
1< m,
then we say that E and ¥ are strongly bisimilar and write E ~ F.

We now present the main results of this subsection, but their proofs are put into the
Appendix to increase readability of the paper. The next proposition indicates that recursive
definition preserves strong bisimilarity.

PROPOSITION 4.4. Let {A; : i < m} and {B; : i < m} be two families of process
constant schemes, and let {E; : i < m} and {F; : i < m} contain at most process
variable schemes X; (i < m). If for all i < m, we have: E;, ~ F;, and

Ai(@) H EAX;(F)) = A;(F)), 5 < m},

~ \ def ~ ~ .
Bi(z;) = Fi{X;(z;) .= B;(7;),j < mj},
then A;(Z;) ~ B;(Z;) forall i < m.

A process variable scheme X is said to be weakly guarded in a process expression E if
every occurrence of X in E is within a subexpression of the form a.F.
The following proposition shows uniqueness of solutions of equations.

PROPOSITION 4.5. Suppose that process expressions E; (i < m) contain at most pro-
cess variable schemes X; (i < m), and each X; is weakly guarded in each Ej (i,j < m).
If processes P; and Q; (i < m) satisfy that, for all i < m, fv(P;), fv(Q;) C {Z;}, and

P ~ E{X;(z;) := P;,j <m},

Qi ~ E{X;(7;) := Qj,j < m},
then P; ~ Q; for all i < m.

5. STRONG REDUCTION-BISIMILARITY

Quantum operations describe sequential computation in quantum processes. It is obvious
that two different sequences of quantum operations may have the same effect, but they are
distinguished from each other in defining strong bisimulation (Definition 4.1). To over-
come this objection, we need to introduce the notion of operation reduction. Operation
reduction between strings of actions is defined by the following two rules: if X is a finite
subset of Var, £ is a super-operator on Hx, foralll <i<n,X =J;_, X;,and

&= (g(n) ®IX—XH) 0...0 (5(2) ®IX—XZ) o (8(1) ®IX—X1)>

then we have

Oper-Red :
P X 1P X, ] £ [X,] = €[X]

t—1t
titty — t1t'ts
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where t,t’,t1,to € Act* are any strings of actions.
Operation reduction between processes is a natural extension of reduction between strings
of actions, and it is defined by the following structural rules:

_ . 1.0 — ﬁlﬁn
Act-Red : al....ozm.P — ﬁlﬁnP

. P— P
Pre-Struct : “Poalb
/
Sum-Struct : P—P

P+Q—-P+0Q

/
Par-Struct : P—P

PlQ - P1Q
Res-Struct : P\i : g:\ 7
Ref : PSP
Trans : PH%_)]%?HR

The symmetric forms of the Sum-Struct and Par-Struct rules are omitted in the above
table.

LEMMA 5.1. (I) Forany P € P, there exists a unique process, written [ P, such that
P — [P], and [ P] — Q does not hold for all Q € P except | P] itself.
(2) If P — P/, then P' — [P].

Proof. Induction on the structure of P. O

By ignoring different decompositions of a quantum operation, we have:

DEFINITION 5.1. Strong reduction-bisimilarity ~ is defined to be the transitive closure
of ~, i.e.,

o0
*
~ = ~n
-
n=1

where for any P,Q € P, P ~ Q if there are Py, Py, Q1 and Q2 such that P ~ P; — P>,
Q~Qr— Q2and Py ~ Q.

PNP1—>P2

~ ~

Q~ Q1 — Q2
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Strong reduction-bisimilarity provides us with a framework in which we can observe
interaction between sequential quantum computation and communication of quantum sys-
tems. Some basic properties of strong reduction-bisimilarity are presented in the following:

THEOREM 5.1. (I) If P ~ Q then P ~ Q.
(2) If P — P’ then P ~ P'. In particular, if X = Ul X, and

£ = (g(n) ®IX7X”> 0...0 (5(2) ®IX7X2) o (5(1) ®ZX7X1)7

then we have:
(a) EV[X].£EP[X5]...£M[X,].P ~ E[X].P;
(b) A(T) ~ E[X].A(T) when process constant scheme A is defined by

AF) Y eW[X.6P[Xy)...£M[X,].A®F),

where {7} = |, X;.
(®) ~isan equivalence relation.
4) If P~ Q then
(@) a.P h a.Q;
() P+RXQ+R;
(¢) P|R~ Q|R;and
(d) P\L~Q\L.

Proof. (1), (2) and (3) are immediately from Definition 5.1, and (4) may be easily proved
by using Theorem 4.1. O

6. APPROXIMATE STRONG BISIMULATIONS

It is required in the definition of strong bisimulation that two bisimilar processes must
perform exactly the same sequences of quantum operations. This condition is obviously
over-discriminative because two different sequences of quantum operations may have the
same effect. Such an observation motivated us to introduce the notion of strong reduction-
bisimilarity in the last section. In many cases, however, strong reduction-bisimilarity
still may not make sense because quantum operations form a continuum and their minor
changes can violate strong reduction-bisimilarity between two quantum processes. Thus,
an approximate variant of bisimilarity should be vital in a quantum process algebra. Let A
be a nonnegative real number, and let R be a binary relation between quantum processes. If
forany P € P and p,0 € D(H), D(p,0) < Aimplies (P, p)R(P, o), where D(-, -) stands
for trace distance, then R is said to be A—closed. Now we are able to define approximate
strong bisimulation.

DEFINITION 6.1. A symmetric, A—closed relation R C Con x Con is called a strong
A—bisimulation if for any (P, p),(Q, o) € Con, (P, p)R{(Q, o) implies,

[0}

(I) whenever o is T or an output and (P, p) = (P',p), then for some Q', (Q,0) =

(Q',0) and (P', p)R(Q', 0);

(2) whenever (P, p) £l (P', p"), then for some F, Q' and o', (Q,0) i (@', "),

(P, pYR(Q',0"), and Do(E,F) < A, where diamond distance D(-,-) between
super-operators is defined as in Subsection 2.6,
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(3) whenever (P, p) <y (P',p)and x ¢ fv(P)U fu(Q), then for some Q', (Q,0) Y
(Q,0) and forally ¢ fo(P') U fo(Q') —{x}, (P{y/z}, p)R(Q{y/x}, 0).
DEFINITION 6.2. For any (P, p),{(Q,c) € Con, we say that (P, p) and (Q,c) are
strongly A—bisimilar, written (P, p) ~x (Q, o), if (P, p)R(Q, o) for some strong A\—bisimulation
R. In other words, strong A—Dbisimilarity on Con is defined by

~y = U{’R : Ris a strong A — bisimulation}.

DEFINITION 6.3. Let P,QQ € P. Then:

(1) We say that P and Q are strongly A\—bisimilar, written P ~ Q, if (P, p) ~x (Q, p)
forall p € D(H).
(2) The strong bisimulation distance between P and () is defined by
Dy(P,Q)=inf{\>0: P~ Q}.

The following characterization of A—bisimilarity between configurations is useful, and

its proof is easy.

LEMMA 6.1. Forany (P, p),(Q,0) € Con, (P,p) ~x (Q,0) if and only if,

(I) whenever o is T or an output and (P, p) = (P',p), then for some Q', (Q,0) =
(Q',0) and (P', p) ~x (Q',0);

(2) whenever (P, p) £l (P, p'), then for some F and Q' and o', (Q,0) g (@', 0",

(P, 0"y ~x (Q',0"), and Do (E,F) < A
(3) whenever (P, p) ks (P’ p)y and x ¢ fo(P)U fv(Q), then for some Q', (Q,0) gk
(Q',0) and for ally & fu(P") U fo(Q') —{z}, (P{y/z}, p) ~x (Q'{y/x},0),
and the symmetric forms of 1, 2 and 3.

We shall need the following simple lemma in the proof of Theorem 6.1(1) below.

LEMMA 6.2. If R; is a strong \;—bisimulation (i = 1,2), then R1 o Ry is a strong
(M1 + Ao)—bisimulation.

Proof. We first show that R1 0 R is (A1 + Ag)—closed. If D(p, o) < A1+ Ao, then there
must be ¢ such that D(p,d) < A; and D(§,0) < Ao. Since R; is A;—closed for i = 1, 2,
it holds that (P, p)R1 (P, §) and (P, §)R2(P, o). This implies (P, p)R1 0 Ra(P, o).

Now suppose that (P, p)R10R2(Q, o). Then (P, p)R1(R, ) R2{(Q, o) for some R and

. We only need to consider the following case: if (P, p) £ (P, p'), then for some G, R’

and &', (R, 8) XV (R, 67, (P, VR (R, 8) and Do(E,G) < Ay, and furthermore, for
some F, Q" and o’, (Q, ) "5 (), o), (R, 8)Ro((Q, 0"} and Do (G, F) < Ao. Then
(P',p"YR10R2{Q’, 0’y and

Do(E,F) < Do(€,G) + Do(G,F) < A1 + X2 O

The next proposition shows that the process constructors introduced in qCCS are all
non-expansive according to pseudo-metric Dyy,.

THEOREM 6.1. (1) Strong bisimulation distance Dy, is a pseudo-metric on P.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.



30 . Mingsheng Ying et al.

(2) For any quantum processes P, Q, we have:
(@) Dgp(a.Pya.Q) < Dgp(P, Q) if awis T, an output or an input;
(b) Dyp(E[X].P,FIY].Q) < max{nxy, Do(E,F) + Dg(P, Q)}, where

{o, fX=Y,
nx)y = .
o0, otherwise;

() Dop(P+R,Q+ R) < Dg(P,Q);

(d) Ds(P||R,Q||R) < Ds(P,Q) if all super-operators occurring in P,Q and R
are trace-preserving;

(e) Dsb(P\LvQ\L) < Dsb(P7 Q)

Proof. To prove (1), we only need to check the triangle inequality
Dsb(P7 R) < Dsb(P7 Q) + Dsb(Qv R)

for any quantum processes P, Q) and R. It suffices to show that for any A1, A2 > 0, if
Dsb(P, Q) < A1 and Dsb(Q,R) < Mg, then Dsb(P, R) < A1 + A9. In fact, it follows
from Dg,(P, Q) < A1 and D, (Q, R) < Ao that for some p1 < Ap and po < Ao, we have
P ~, Q ~,, R. Thus, forall p, (P,p) ~,, (Q,p) ~u, (R,p), and there are strong
(1 —bisimulation Ry and strong 12 —bisimulation R such that (P, p)R1(Q, p)R2(R, p).
This leads to (P, p)R1 o R2(R, p). The above lemma asserts that R o Ry is a strong
(u1 + pe)—bisimulation, and thus (P, p) ~,, 1., (R,p). Hence, P ~, y,, R, and
Dsb(P, R) < pp A pe < A1+ Aol

(2.a) is immediate from Lemma 6.1. The proofs of (2.c) and (2.e) are easy.

(2.b) It is obvious for the case of X # Y. Now assume X =Y. If D,(€,F) < A and
D (P, Q) < p, then there is y/ < p such that P ~,,, Q; thatis, (P, o) ~,/ (Q, o) for all

o. For each p, we have (£[X].P, p) "2V (P, £x(p)) and (F[Y].Q. p) "2 (Q, Fx (0)).

Note that
D(Ex(p): Fx(p)) = D(E(p), F(p)) < Do(E,F) < A

and ~ is A—closed. Then

(P,Ex(p)) ~w (Q,Ex(p)) ~x (Q, Fx(p)),
and (P,Ex(p)) ~a+w (@, Fx(p)). From Lemma 6.1 we see that (E[X].P,p) ~xiw
(FIY].Q, p). Hence

Du(E[X].P, FIX].Q) < A+ ' < A+ 1.

This completes the proof by noting that A and p are arbitrary.

(2.d) For arbitrary A > 0, if Dg,(P, Q) < A, then there is & < A such that P ~,, @; that
is, (P, p) ~, (Q, p) for all p. Our purpose is to show that D, (P||R, Q||R) < A. To do
this, we only need to find a strong p—bisimulation R, containing ((P||R, p), (Q||R, p))
for all p. This can be carried out by a modification of the technique used in the proof of
Theorem 4.1(2.f). We put the technical details into the Appendix. O

An approximate version of strong reduction-bisimilarity can be defined in a natural way:

DEFINITION 6.4. Let P,Q € P. Then:
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(I) We say that P and Q are strongly \—reduction-bisimilar, written P ~ Q, if there are
n >0, A,...;\, > 0and Ry, R}, ..., Ry, R}, € Psuchthaty | \; < \and
PR~y RIS .LAR,~y\, R, Q.
(2) The strong reduction-bisimulation distance between P and () is defined by
Day(P,Q) = inf{A>0: P~y Q}
Similar to Theorem 6.1, we have:

THEOREM 6.2. (1) Strong reduction-bisimulation distance Dy, is a pseudo-metric
onP.

(2) For any quantum processes P, Q, we have:
(@) Dgp(a.P,a.Q) < Dgp(P, Q) if w is T, an output or an input;
(b) Dsrp(E[X].P, FIY].Q) < max{nx,y,Do(E,F) + Dep(P, Q)}, where nx y is
as in Proposition 6.1(2.b);
(9] Dsrb(P =+ R, Q + R) < Dsrb(Pv Q)’
(d) Dspp(P||R,Q||R) < Dgpp(P, Q) if all super-operators occurring in P,Q and R
are trace-preserving;

(e) Dsrb(P\LvQ\L) S Dsrb(PaQ)~
Proof. (1) To show the triangle inequality:
Dsrb(Pv Q) + Dsrb(Q7 R) 2 Dsrb(P» R)7

it suffices to note that for any A,z > 0, P <~y Q and Q riu R implies P fQM_H R. This is
immediate from the definition of strong A—reduction-bisimilarity.

(2) We choose to prove (2.b), and the proofs of the other items are similar. Assume that
X =Y. Forany A > 0, if P LA Q, then we have

PiRy~y R~ ..AR,~y\, R, AQ
for some Ry, R},..., Ry, Rl and Ay, ..., A, with >°1 A, < A. Then it follows from
Theorems 5.1(4) and 6.1(2) that
E[X].P ~ E[X].Ry ~p(e,F)+n FIX].RL ~ ...
R FIX].R, ~, FIX].R, ~ FIX].Q
On the other hand, we have
(Do(gaf) + >\1) + )\2 —+ ...+ )\n S Do(gaf) + )\

Thus, E[X].P ~pe 7)+» F[X].Q. Therefore,

Dy (E[X].P, F[X].Q) < inf{Ds(E,F) + A: P ~, Q}
= Do(gvf) + Dsrb(Pa Q) O

A quantum process P € P is said to be finite if it contains no process constants. We
write Py;,, for the set of finite quantum processes. For any set §2 of quantum gates, we
write Py;,, [ for the set of finite quantum processes in which only gates from €2 and
measurements in computational bases are used as quantum operations (see Clause 4 in
Definition 3.1 and Example 2.5). By combining Theorems 5.1(2.a) and 6.2(2) we obtain:
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COROLLARY 6.1. If Q is an approximately universal set of quantum gates (e.g., the
Hadamard gate, phase gate, CNOT, and w /8 gate (or the Toffoli gate)) ([15], Chapter 4),
then Pyin[Q] is dense in Py, according to pseudo-metric Dy,

7. CONCLUSION

This paper defines an algebra qCCS of quantum processes and presents its transitional
semantics. The strong bisimulation semantics of qCCS is established, and its modification
by reduction of quantum operations is given. Furthermore, approximate versions of strong
bisimulation and reduction bisimulation are introduced.

We conclude this paper by mentioning some topics for further studies. Only the strong
bisimulation semantics of qCCS has been established in the present paper, and a weak
bisimulation semantics is still to be exploited for qCCS. However, it is more interesting to
consider some problems about quantum processes that are irrelevant in classical quantum
process algebras. Several authors started to examine the role of entanglement in quantum
sequential computation (see for example [9], [3]). It seems that entanglement is much more
essential in quantum concurrent computation. So, an interesting topic is to understand the
role of entanglement in computation within the framework of qCCS. The most spectacular
result in fault-tolerant quantum computation is the threshold theorem that it is possible to
efficiently perform an arbitrarily large quantum computation provided the noise in indi-
vidual quantum gates is below a certain constant (cf. [15], Section 10.6). This theorem
considers only the case of quantum sequential computation. Its generalization in quantum
concurrent computation would be a great challenge. The bisimulation distances Dy, and
D,y introduced in this paper can be used to express certain fault-tolerance criteria.

It is should be pointed out that qCCS is a purely quantum process algebra in the sense
that no classical information is explicitly involved in it. The motivation for striping out
classical computation and communication is that the combination of classical and quan-
tum information gives rise to major difficulties when attempting to define a bisimilarity
which is a congruence with respect to parallel composition. The main purpose and rele-
vance of designing a quantum process algebra is to provide a formal model for distributed
quantum computations and quantum communication protocols, typical instances of which
are teleportation, super-dense coding and BB84. These paradigmatic protocols rely on
both quantum and classical computation and communication. So, one of the most impor-
tant topics for further studies would be to find a suitable extension of qCCS in which both
quantum and classical information can be accommodated well.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library by vis-
iting the following URL: http://www.acm.org/pubs/citations/journals/tocl/2008-V-N/pl-Ul
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