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Abstract -- This paper presents a novel radial basis function 

(RBF) collocation method to solve the moving conductor eddy 

current problem. The magnetic field is considered an 

addition of two fields generated respectively by the excitation 

current and the eddy current according to the source 

superposition principle. The corresponding governing 

equations are decoupled and solved with the RBF. Moving 

coordinate systems in which the separate fields are computed 

are also constructed to avoid the model reconfiguration 

caused by the motion. Electromagnetic field equations are 

analyzed with kinetic equations and circuit equations 

together to simulate the motion process. A practical 

engineering problem is computed to verify the method.  



I. INTRODUCTION 

  Until now, the computation of eddy current magnetic field with 

moving conductor has attracted much attention in engineering 

applications [1]-[2]. Since the position of moving conductor in the 

solving domain is always changing, traditional mesh-based 

methods, for instance, the finite element method (FEM), meet 

great difficulty in reforming the mesh when the motion process 

needs to be analyzed.  

  As a newly developed meshless method, the RBF collocation 

method introduces a set of nodes distributed in solving domain 

instead of traditional elements to form primary functions and the 

partial differential equations are transformed into linear matrix 

equations and solved [3]. Until now, it has been applied to 

compute steady and transient state electromagnetic fields [4]-[6].  

  According to the properties of RBF and the source superposition 

principle, this paper presents a novel algorithm to solve moving  



conductor eddy current problem and analyze the motion. The 

magnetic field is considered to be an addition of two fields 

generated by the excitation current and the eddy current 

respectively. The governing equations including two unknown 

fields are decoupled with RBF and solved by time-domain 

iteration. Moving coordinate systems in which separate fields are 

calculated are also constructed to avoid the model 

reconfiguration during the motion. Kinetic equations and circuit 

equations are solved on the basis of the magnetic fields to 

simulate the motion process. To verify this method, we computed 

the eddy current problem in a moving electromagnetic switch 

and analyzed its motion.  

II. MOVING CONDUCTOR EDDY CURRENT PROBLEM 

  Consider a homogeneous and isotropic electromagnetic system 

in domain                with a boundary        in which a non-magnetic nR 
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conductor is moving with a speed     . The equations for the 

electromagnetic field are:  
V

where   and   are excitation current and eddy current respectively. 

Assuming that σ and μ are constant, with Lorentz gauge, the 

equivalent form of (1) in conductor area        by using magnetic 

vector potential is:  
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This is a typical convective-diffusion equation. Since       exists 

only in        , we get the governing equations as follows:  
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where the operator        means                                and            is a 

boundary operator. 
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III. SUPERPOSITION RBF COLLOCATION METHOD 

  With                         collocation nodes respectively in Ω and on 

∂Ω, the magnetic vector potential  A  could be written as [3]: 
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where      is the coordinate of nodes in the space,                       

is the RBF centered at node       and              is the vector form,  
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             is the Euclidean distance,       is the unknown coefficient 

vector to be determined, c is a shape parameter. And the RBF 

collocation form of (3) at node      is: 
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  Crank-Nicolson time matching scheme is applied to deal with 

the time differential and construct iteration to solve (5) as: 
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where            ,            and             mean doing operating to the 

elements in the vector     , ∆t is the time interval.  

( )TB T ( )TL 

  Equation (6) shows the governing equations at nodes in different 

areas and on the boundary. To exactly figure the shapes of the 

conductor and the excitation current areas, sufficient nodes 

should be set in each part of the domain. However, when the 

conductor lies very close to the excitation area, the nodes in the 

gap between them satisfy different equations from those in the 

current-existing areas. Since the gap is too small to cover many 

nodes, it is difficult to exactly approximate the high gradient 

magnetic filed in it. Besides, if we consider the nodes moveless, the 

shape of the moving conductor can not be figured during the 

motion and the governing equations at nodes near the conductor 

boundary will change abruptly when the conductor covers or 

leaves them. Otherwise, if the nodes are assumed to move with the 

conductor, the RBF matrix will become time-variant to break the 

iteration. 



  To solve these problems, according to the superposition 

principle, the magnetic field is considered to be an addition of 

two fields generated by      and      respectively as: 
sJ eJ

The separate fields      and     are expressed with RBFs formed in 

different coordinate systems. Both     and      are formed on nodes 

located in the global solving domain and they could be different 

RBFs or structured by nodes at different positions. With this 

method, the gap between the conductor and the excitation area is 

eliminated and the motion of the conductor could be expressed 

by the relative movement between coordinate systems with fixed 

RBF nodes to avoid the model reconfiguration during iteration. 
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  Consider     and     to be the coordinates of nodes of     and     in 

their own system and     and     to be in the other’s.     satisfies the 

Poisson equation everywhere in Ω. So we get:  
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With a known      , the coefficient         , which would be used to 

compute         later, could be obtained. Substituting (7) and (8a) in 

to (6) and noticing that      exists only in       , we get:  
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  Although one unknown magnetic field is added with this 

method, the numerical model becomes more convenient since the 

computation in each iteration step is equivalent to a static 
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magnetic field problem with just one source. Moreover, the 

number of division pieces of fields is not limited. If there are 

many moving conductors or excitations in the solving domain at 

the same time, we should correspondingly increase the number of 

separate fields to express them. And the area with a complex 

shape could be purposely divided into small, regular ones which 

are easy to figure. 

IV. MOTION ANALYSIS 

  In many devices, for instance, the electromagnetic launchers, 

the motion of the conductor is greatly affected by the magnetic 

field. The parameter V needs to be solved through the kinetic 

equations with the results of the magnetic field in each iteration 

steps. According to Ampere’s force law, the force imposed on the 

conductor by the magnetic field is:  
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     is considered constant during      . So we get:  k
F t

where m is the mass of conductor and     is its moving 

displacement during       .  Sometimes the induction caused by the 

eddy current magnetic field to the excitation circuit can not be 

ignored. The inducted electric potential could be written as: 
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where ds is the actual area of the closed circuit. So     could be 

solved Combining (13) with the corresponding circuit equations.  
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  The flow of the method is formulated as:  

1. Set            and the time                   , build up the coordinate 

systems and the RBF numerical model, initialize the parameters  
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and compute        and        .  0
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0
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2. Compute   with the corresponding circuit equation, and 

calculate       and        with (8) and (9).  
1
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1
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sJ

3. Compute the magnetic field with (7).  

4. Compute the motion and the circuit parameter with (10)-(13).  

5. If the motion is over, save the data and end the computation. 

Otherwise, let k+1, modify the distance between the coordinate 

systems and go to Step 2 to continue the iteration.  

V. NUMERICAL EXAMPLE 

  To verify the proposed method, we compute the magnetic field 

in an electromagnetic switch system and simulate the motion 

process of the switch.  

  The switch is an aluminium round plate which could move 

along an insulated shaft in the center. Two hollow cylinder-

shaped excitation coils are winded with the same outer radius on  
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Fig. 1. Cross-section of the electromagnetic 

switch system. 

the shaft to control the motion of 

the switch. Fig. 1 shows the 

cross-section of the model. The 

millisecond level fast-rising 

excitation current is created by 

the discharge of a capacity. Since 

the upward and downward 

motions are driven by circuits 

with the same parameters, only 

the upward motion process 

excited by one coil is analyzed.  

  Because of the rotational symmetry, we only need consider the 

right side of the cross-section. So the model is equal to a two-

dimensional domain with a y-direction moving conductive area 

and a static area with time-variable current below. The simplified 

model and the sizes are shown in Fig. 2. A,        and 
eJsJ



exist only in the z-direction and A satisfies the Dirichlet 

boundary condition everywhere on ∂Ω. Equation (3) could be 

written as:  
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Fig. 2. 2D simplified numerical model of the electromagnetic switch 

system. (Unit: mm) 
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  The initial distance between the plate and the coil is 3 (mm) and 

the requested distance is 7 (mm). The radius of the shaft is 10 

(mm) and there is an initial 3000 (N) resisting spring force 

imposed by the shaft axle on the plate. When the excitation 

circuit is closed at time t=0, the plate, in which the eddy current 

is generated, is forced to move up by the magnetic field.  

  The turn number of the coil is 83 and    is considered 

homogeneous in the section. The excitation current     is created 

by a typical RLC circuit. Because of the eddy current, the 

inductance needs to be modified in the iteration as:  
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where Ф is the magnetic flux and     is the interlinkage turns 

number of the coil,     =450 (μH) is the self-inductance of the coil. 

The capacitance C=2400 (μF) and the resistance R=0.06 (Ω).  
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The initial voltage on the capacitor is 1000 (V).  

  Two coordinate systems are built to compute the magnetic fields. 

A set of 41×41=1681 nodes are evenly located in the domain and 

on the boundary in each of them to form the RBF. According to 

the model, the initial distance between the coordinate systems is 3 

(mm). Here we choose the RBF-Gauss function 
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22

jj xxc 

Fig. 3. Isopotential lines of eddy current density in the 

plate section at t=1 ms. 



  Fig. 3 shows the isopotential lines of      in the cross-section of 

the plate at time t=1 (ms). Furthermore, we choose four 

observation points from Fig. 3 as: P1(30,0), P2(30,2.5), P3(30,5.0), 

P4(30,7.5) and draw their       time-variation curves in Fig. 4. The 

curve of       is also added for compare. From the figure we could 

clearly see the skin effect and the phase difference.  
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Fig. 4. Time-variation curve of the current densities. 



  On the basis of the magnetic field, the motion process is 

simulated. Fig. 5 shows the moving displacement of the plate 

during the motion. At time t=0.5 (ms), the plate overcame the 

resisting spring force and began to move. And the plate reached 

the set position at t=2.3 (ms). The numerical result agrees well 

with the experiment data.  

Fig. 5. Variation curve of the moving displacement of the plate  



VI. CONCLUSION 

  A superposition principle based RBF collocation method to 

compute the moving conductor eddy current problem is 

presented in this paper. According to the property of RBF, the 

magnetic field is divided into two separate fields and computed in 

moving coordinate systems with time domain iteration. 

Compared with the traditional mesh-based algorithm, this 

method avoids the model reconfiguration during the 

computation and could simulate the motion process conveniently. 

A practical engineering problem is solved to verify the method. 

The further work is in progress to apply the method to solve 

other more complex problems such as 3-D problems with 

asymmetrical shapes.  


