
JASA

Methods for Automatically Extracting Bioacoustic Structure

Peter Rickwood
University of Technology, Sydney, Australia

Andrew Taylor∗

School of Computer Science and Engineering

University of New South Wales, Australia

(Dated: March 26, 2007)

This paper presents mathematical methods for automatically extracting and analysing bioacous-
tic signals. Automatic techniques are described for isolation of target signals from background
noise, extraction of features from target signals and unsupervised classification (clustering) of the
target signals based on these features. The only user-provided inputs, other than raw sound, are
6 control parameters. In particular, the number of signal categories is determined automatically.
The techniques, applied to noisy hydrophone recordings of Humpback Whales (Megaptera novaean-

gliae), achieve good results, suggesting they are sufficiently general to be applicable in many other
bioacoustic settings.

I. INTRODUCTION

Almost all analysis of bioacoustic signals is done with
substantial human guidance. This can be extremely time
consuming. It can also raise serious concerns regarding
subjectivity. Lack of quantification can make replication
or comparison of manual analyses difficult. There are two
principal tasks in extracting the structure of bioacoustic
signals:

1. Signal segmentation: The separation of the sig-
nal component potentially originating from one or
more target sources from the remainder of the sig-
nal (the background). The target sources may be
a single individual, multiple conspecific individu-
als or multiple individuals from multiple species.
The signal background may include: bioacoustic
signals from non-target individuals of the same
species; bioacoustic signals from other species and
non-bioacoustic sounds.

2. Signal characterization: The characterization of
the signal component from the target individual(s)
isolated in the previous stage. This characteriza-
tion will involve reduction of the signal into a more
useful and typically much more compact form.

This paper describes automatic techniques for each
task and present the successful results of applied these
methods to characterize a noisy set of complex bioacous-
tic signals - Humpback Whale Megaptera novaeangliae
vocalizations. An open-source software implementation
of the techniques described in this paper is available from
the authors.
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II. TARGET SIGNAL SEGMENTATION

Signal segmentation is a problem common to many
domains. For example, it has been well studied for hu-
man speech recognition ([8, 36]). Domain-specific charac-
teristics presumably explain why these techniques have
not been transferred to bioacoustic applications. Some
researchers have isolated bioacoustic signals manually
([18, 30]), or avoided the issue altogether ([15]).

It is desirable to minimize assumptions on the ampli-
tude, duration, or frequency characteristics of the vocal-
izations as these can vary greatly between target species.

Our approach is energy-based. It assumes intervals of
the signal which contain target components will contain
more energy within a certain frequency range than other
intervals. Further assumptions might produce better de-
tection of target components but risk the reduction of
generality.

A. Signal Segmentation, Step 1: Vector Extraction

The first step in this extraction process is to partition
the recording into fixed-length frames. Background noise
is assumed to vary sufficiently slowly that it is almost
constant within frames. For estimation of background
noise, it is assumed that target vocalizations occupy at
most 70% of each frame. The technique thus depends
on target signals being interspersed by sufficient periods
of background noise, which is typical of bioacoustic envi-
ronments. The exact choice of frame length is relatively
unimportant if it significantly exceeds the duration of
vocalizations. Frame length is a manually chosen param-
eter - we have not explored automatic determination of
frame length but this may be possible. The users must
also choose parameters for FFT size, FFT step and a
frequency range appropriate for the target signals.

For humpbacks we use a frame length of 20 seconds,
a Hann-windowed 1024 point FFT with a 1/3 window
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FIG. 1: The combined energy histogram of target and noise
signal is usually a combination of a low energy, approximately
symmetric noise distribution, and a complex distribution cov-
ering signal energy.

step and a 90-5600 Hz frequency range. The major-
ity of humpback signal energy is in the 0-6 kHz range
([11, 12, 17, 28, 29, 42, 44]). We exclude the 0-90
Hz range because ambient noise typically dominates this
range. Our humpback data set has been digitized at 32
kHz. A 20 second frame with 1024 point FFT and 341
sample FFT step produces 1876 values for each frame.

B. Signal Segmentation, Step 2: Differentiating
signal and noise

To begin with, a rough grouping is made based purely
on band-limited energy. That is, for intervals where en-
ergy is greater than some threshold E, the target signal
is considered to be present, otherwise it is considered
absent. Calculation of the threshold value E is done
through some simple histogram analysis. All values in
the frame are used to create a histogram which describes
the distribution of band limited energy. Figure 1 shows
a typical histogram.

Making some assumptions about the general form of
this energy histogram will allow us to calculate a thresh-
old energy E. As a start, it is assumed that noise samples
are distributed according to a distribution f , and signal
samples are distributed according to g. The energy his-
togram of the band-limited energy samples in each frame
can then be described by the distribution (f + g). The
following further assumptions are made:

1. Samples drawn from g will in general have greater
energy than those drawn from f . i.e. E(g(X)) >
E(f(X)).

2. f is approximately symmetric.

3. The probability of an observation drawn from g
having less energy than the mode of f is 0. (i.e.
E(g(X) < mode(f) = 0)

4. The mode of (f + g) is the same as the mode of f .

The procedure is then as follows:

1. Estimate the mode of (f + g), which also gives us
the mode of f (from assumption 4).

FIG. 2: An illustration of how it is possible, given an energy
histogram, to separate signal and noise distributions by as-
suming that the distribution covering noise is symmetric. For
each possible energy threshold, the black area to the right of
that threshold is proportional to the expected number of in-
correctly labelled noise samples, and the grey area to the left
of the threshold is proportional to the number of incorrectly
labelled target samples.

2. Reconstruct f from its known mode. This can be
done using assumptions 1,2 and 3.

3. For all possible thresholds, estimate the number
of misclassified samples if all samples below that
threshold are deemed noise and all above deemed
signal. Since we know (f + g) and f , we also know
g, which means this is a trivial calculation. See
Figure 2.

Once a threshold energy is calculated, each sample in
the time series can be tentatively labelled as either tar-
get (if it contains more energy than the threshold), or
background (if less). Detection is improved by making a
further assumption:

• There is some minimum time period, of length d
seconds, which must separate an interval of ambi-
ent noise from an interval of a target signal (i.e. a
vocalization). That is, if a signal/noise interval is
detected, no noise/signal interval can occur before
d seconds has elapsed.

The assumption allows us to apply a temporal smooth-
ing procedure, where each sample is classified as target
only if the majority of other samples in a d second neigh-
bourhood around it are also classified as target. This
smoothing is applied repeatedly until no changes take
place. The separation period can be small relative to the
expected signal length – for humpbacks, we use d = 0.05
– despite the fact that most humpback vocalizations are
much longer than this.

The histogram analysis, followed by temporal smooth-
ing, is performed for each frame in the recording, so that
there is a complete classification of each interval in the
recording into either target or noise. Each contiguous
time interval labelled as target is regarded as a single
distinct vocalization.

Figure 3 shows this technique as applied to a frame
containing a series of vocalizations. All 15 vocalizations
are successfully detected, with only 1 false positive (the
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FIG. 3: The black line under each spectrogram indicates
which intervals have been classified as target. The left figure
is based on energy alone, and the right figure shows the effect
of smoothing on this classification. Notice that good results
are obtained on this 20 second signal despite the presence of
a second whale singing (circled on right).

seventh interval from the left), and some artificial elonga-
tion of the ninth and sixteenth intervals. The technique
successfully excludes most ambient noise and, more im-
pressively, the fainter vocalizations of a second (more dis-
tant) whale, which are circled in the bottom figure. This
is sufficiently accurate to allow successful unsupervised
classification.

III. UNSUPERVISED CLASSIFICATION OF
SOUNDS

There has been a variety of work on (supervised) clas-
sification of bioacoustic signals into (predetermined) cat-
egories, e.g. ([15, 30, 41]). This paper does not address
supervised classification. It presents techniques for un-
supervised classification (clustering) – classification with-
out predetermined categories.

Applications of unsupervised classification to bioacous-
tic signals has been limited, e.g.([6, 18, 25]), and typically

with a highly target-specific approach. Unsupervised
classification can be viewed as constructing a model for a
set of signals. For some purposes measurement of several
signal parameters may sufficiently model the signal (see
[2, 15, 17, 20]). Analysis of more complex bioacoustic sig-
nals requires more complex models. This paper details
general methods to automatically build a class of such
models. These methods handle robustly errors in signal
segmentation, allowing automatic signal segmentation to
be employed and hence fully automatic signal analysis.

Unsupervised classification techniques for sound are
not well established, because the temporal nature of a
sound is difficult to capture with standard attribute-value
clustering techniques like AutoClass ([7]) or SNOB ([43]).
This has resulted in the use of a large number of more
exotic techniques being used, such as Kohonen networks
([21]), Adaptive Resonance Theory Networks ([4]), var-
ious clustering techniques (see [6, 18]), and many oth-
ers. Often, the user must specify suitable value for a
number of parameters to obtain good performance from
these classifiers. The technique that we describe avoids
the need for extensive parameter-tweaking by using a
penalty function (inspired by information theory) which
finds a trade-off between model complexity and model fit
to data.

A. Feature extraction

Working with raw sound data is difficult, so after tar-
get signals have been isolated, the next step is to ex-
tract from the raw sound data some higher level features
that accurately describe the time varying frequency and
amplitude characteristics of the signal. We use simple
feature vectors extracted from the same power spectrum
vectors calculated during signal segmentation. Each FFT
produces a power spectrum vector p = [p1 . . . pn]. From
this vector, a simple feature vector q = [q1 . . . qm] is com-
puted, where each qi is the sum of one or more of the
elements of p.

The parameters, n, m and the computation of qi are
user specified. For humpbacks, we use n = 512 and
m = 36 with qi corresponding to exponentially increasing
frequency band sizes, with a small exponent. Specifically,
the number of FFT elements in each feature vector ele-
ment is given by the series [⌊21.05⌋, ⌊21.052

⌋, ⌊21.053

⌋, . . .].
For example, q5 = p12 + p13 (375-406hz) and q33 =
p140 + p141 + . . . + p148 (4375-4625hz)

This yields for every target signal a sequence of feature
vectors describing the time-varying power spectra of the
recording over that interval. These are the basis for all
further analysis. More sophisticated feature vectors are
commonly used in speech recognition (see [13, 14]), and
similar feature vectors might improve performance with
humpbacks, for example, but at the cost of simplicity and
perhaps generality.
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FIG. 4: A Bakis Hidden Markov Model.

B. Vector Quantization

Each vocalization O (detected by the technique in Sec-
tion II), consists of a sequence of feature vectors (i.e.
O = [q1 . . .qn], with each qi being a feature vector qi =
[qi1 . . . qim

]), extracted as described above. Each such
sequence of vectors is reduced to a sequence of integers
through the process of vector quantization ([3, 24, 35]).
Vector quantization essentially clustering vectors in a
multi-dimensional space, and replaces each vector with
the index of the cluster centroid that the vector is clos-
est to, under some distance metric (usually squared Eu-
clidean distance). This process allows us to describe each
vocalization as a sequence of integers [i1 . . . in] rather
than a sequence of feature vectors. The vector quan-
tization/clustering required to do this is performed on
all feature vectors extracted (i.e. on every feature vector
of every target sound detected in the target segmentation
step).

The codebook size (number of cluster centroids) is
specified by the user, for humpbacks we used 512. It
is likely it also could be well determined by an adap-
tive/automatic approach.

C. Hidden Markov Modelling of Sound

Hidden Markov Models (HMMs) [19, 33] are better
known as a tool used in supervised classification of sound,
especially speech recognition ([23, 32, 34, 35]), but the
ability of HMMs to model the time-varying nature of
sound signals also makes them suitable for unsupervised
classification.

Traditionally, Bakis HMMs (HMMs with transitions
only allowed from left to right, see Figure 4) have been
used to model time-varying sounds.

Vector quantization has reduced each vocalization to
a sequence of integers. The integers become the al-
phabet of our HMM. Given a set of integer sequences
{O1 . . . Or}, where each Oi is some integer sequence of
symbols [i1 . . . in], each of which describes a single vocal-
ization through time, we can calculate the following:

1. P ({O1 . . .Or}|M): the conditional probability of

observing the sequences, given a particular Hidden
Markov Model M .

2. Calculate Mopt, the HMM that locally maxi-
mizes P ({O1 . . . Or}|M) (using Baum-Welch re-
estimation).

For now, assume there are k different types of vocal-
ization in the data set – a method for determining k will
be presented later. k HMMs ({M1 . . . Mk}) modelling
these types of vocalization can be constructed using this
algorithm:

1. Partition all observed sequences into k disjoint sets.
Call these {C1 . . . Ck}.

2. For each Ci ∈ {C1 . . . Ck}, calculate Mopt, the
HMM that locally maximizes P (Ci|M). This HMM
is said to describe the elements of Ci. In this way,
each HMM is associated with a disjoint subset of
sequences.

3. For every vocalization (i.e. each Oi), calculate
P (Oi|M) for each HMM M ∈ {M1 . . . Mk}. Oi

is then assigned to the subset Ci associated with
the HMM that maximizes P (Oi|M).

4. If any sequences changed their subset membership,
goto step 2.

In practice, waiting for complete termination (i.e. no
change in subset membership) is inefficient, and, indeed,
convergence is not guaranteed, so the iterations cease
when only a small number (≈ 1%) of sequences have
an altered subset membership.

Given any particular vocalization Oi, it is possible to
determine its type by calculating which of these HMMs
maximizes P (Oi|M). This in itself is a significant devel-
opment, as it is now possible to use the power of HMMs
to model time varying bioacoustic signals.

The above algorithm crucially relies on the value of k.
The following section describes how this is determined
using an information-theory derived penalty function.

1. MDL based classification

Minimum message length (MDL) encoding ([1, 16, 22,
26, 27, 37, 38, 43]) is an information theoretic approach
to balancing a model’s fitting of observed data against
its complexity. In essence MDL encoding states that, for
a set of models {m1, m2, . . . , mn}, each of which is an
alternative way of describing a probability distribution
over observed data, one can assess the quality of any par-
ticular model mi by measuring the length of the binary
string required to describe the model and the observed
data. The best model is the one that minimises the length
of this description string. MDL encoding has been suc-
cessfully employed in widely-used supervised ([31]) and
unsupervised ([43]) classification systems.
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FIG. 5: A simple 2-state HMM.

We wish to choose a value for k, the number of vo-
calization types, that minimises the number of bits, usu-
ally termed the transmission cost, required to encode the
vocalizations (the observed data), and the models that
describe those vocalizations. This requires an encoding
scheme for HMMs.

Suppose we have a simple 2-state HMM, M , shown in
Figure 5, with observable symbols {A, B} and a single
observed sequence: [A, A, A, B, B, A, B].

The transmission cost consists of two parts: The model
cost C(M), which is the number of bits to encode the
model; plus the message cost C([A, A, A, B, B, A, B]|M),
which is the number of bits to encode the observed sym-
bols [A, A, A, B, B, A, B], using the model M .

Communicating the model consists of communicating
the transition and emission probabilities for each state
of the model. The optimal encoding for an event with
probability p is − log2 p bits [40]. For the first state of
the model shown in Figure 5, these are:

Symbol Probability Codeword length
A 0.6 0.74 bits
B 0.4 1.32 bits

Transition Probability Codeword length
X → X 0.9 0.15 bits
X → Y 0.1 3.32 bits

The cost of communicating the transition probabilities
for this state is 3.47 bits, and the cost of communicat-
ing the emission probabilities is 2.06 bits. So the total
transition cost for that state is 5.53 bits. This process is
repeated for each state to get the total cost of specifying
the entire model. For this example, it’s 7.78 bits, since
state 2 takes 2.25 bits.

It is straightforward to calculate the probability
P (O|M) of observing some sequence O for a particular
HMM M ([33]) allowing us to us to calculate the mes-
sage cost − log2 P (O|M), the number of bits required to
communicate the observed data given the model.

IV. DETERMINING THE NUMBER OF
CLUSTERS

The ability to calculate the transmission cost of a
HMM and the data it describes allows us to compare al-
ternative ways of classifying observations. For example,
one could initially set k to 1 (i.e. have a single category of
vocalization, modeled by a single HMM M1

1 ), and calcu-
late C(M1

1 ) and then calculate
∑r

i=1 C(Oi|M
1
1 ) for all ob-

servations O1 . . . Or. The sum C(M1
1 )+

∑r

i=1 C(Oi|M
1
1 )

is the total transmission cost for model and data. We
could then repeat for increasing values of k, and see how
the total transmission cost varies. Choosing the value
of k that minimises total transmission cost would give
an estimate of k. While this approach is feasible, it can
be computationally expensive, and so we now describe a
more efficient method of achieving the same end – that
is, estimating a value of k that has good fit to data but is
sufficiently small so that the categories are intelligible to
a human viewing the results. Note that, in a purely sta-
tistical sense, simpler models are not always preferable
([39],[10]), but they do have the (non-statistical) advan-
tage of being easier to interpret.

1. Initially, a ‘guess’ is made for the initial number of
classes, kguess. Vocalizations are assigned to classes
at random. A HMM is then generated for each
class, which is then trained (using Baum-Welch re-
estimation) on the members of the class. This will
give kguess HMMs, each of which models some dis-
joint subset of the instances that are being classi-
fied.

2. Iterative expectation-maximization ([9]) is now
performed until class membership is stable:

(a) M: Train each HMM using the members that
belong to its class. This is done with Baum-
Welch re-estimation.

(b) E: Re-estimate class membership for each vo-
calization, based on the newly trained HMMs
by assigning each vocalization to the class
whose HMM maximizes P (O|M).

(c) goto (1) if any reassignments took place in (2).

3. For each of the kguess HMMs (call them
{M1 . . . Mkguess

}), calculate whether removing that
HMM results in a reduction in total transmission
cost.

4. Test to see if splitting any classes results in an
information gain (i.e. a reduced number of bits).
That is, for every HMM M , modeling a set of ob-
servations O, partition O into two random sub-
sets (O′, O′′), generate a HMM for each subset
(M ′, M ′′), and perform HMM training and re-
estimation (as in 2), until subset membership is
stable. Once this is done the transmission cost of
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the original grouping (i.e. C(M)+C(O|M)) is com-
pared with that of the proposed split (C(M ′) +
C(O′|M ′) + C(M ′′) + C(O′′|M ′′)). Whichever has
the lower transmission cost is retained. That is,
if C(M ′) + C(O′|M ′) + C(M ′′) + C(O′′|M ′′) <
C(M) + C(O|M), M is replaced with M ′ and M ′′,
otherwise M is retained and M ′ and M ′′ are dis-
carded. If any of these ‘splits’ do occur, the split-
ting test is applied recursively to each new subset,
until there is no information gain in splitting. After
this process is complete, let the remaining number
of classes be k′′. Figure 6 demonstrates the recur-
sive splitting of a single class (covering four obser-
vations o2, o4, o7, o9) into three separate classes.

5. Consider there now to be k′′ remaining
classes/HMMs, with each still representing a
disjoint subset of instances. At this point, the
algorithm repeatedly performs the expecta-
tion/maximization described in step 2, until no
changes to class membership takes place. This
second re-estimation step helps to move out of
undesirable locally optimal solutions produced by
the greedy split/join procedure.

6. Perform one final time the procedure described in
step 3 – removing HMMs while there is an informa-
tion gain in doing so. Let the remaining number of
clusters be k′′′.

7. This completes the classifying procedure, with k′′′

being the number of classes ‘decided’ on by the al-
gorithm.

One objection that may be raised is that the technique
for automatic grouping of vocalizations requires an initial
‘guess’, by the user, of the number of distinct types of
call. However, our initial experiments with humpback
vocalizations seem to indicate that this initial guess in
unimportant, playing little role in the final number of
classes determined by the technique. In other words, the
technique is not sensitive to this initial guess. Figure 7
illustrates.

In addition, we have thus far avoided specifying how we
determine the number of states in the HMM that mod-
els each call category. While this could be determined
through some automatic scheme, we choose the simpler
and faster method where the number of states is propor-
tional to the mean length of the vocalizations modeled by
the HMM. As the number of states is proportional to call
length, the user must specify the constant parameter.

V. RESULTS

We applied the techniques (signal segmentation, fea-
ture extraction, clustering) to 11 hours of humpback
recordings. The recordings consisted of 9 separate record-
ings, each of between 54 and 90 minutes, taken on sep-
arate days via hydrophone buoy off the coast of North

FIG. 6: Recursive splitting of a single class.
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FIG. 7: Final number of clusters against initial number of
seed clusters.

Stradbroke Island in Queensland, Australia – a known
migration path of humpbacks. Each recording captures
the vocalizations of an individual humpback as they pass
near the buoy. The depth and orientation of the whale
to the buoy vary through time. Wave and wind noise
also vary throughout the recordings. Boat motors are
recorded, as are other (more distant) whales. Noise levels
vary by over 10 dB through the 11 hours of recordings,



7

FIG. 8:

but in any 20 second interval, variation in background
noise is generally less than 3 dB. We performed no filter-
ing or other pre-processing to minimise the effect of noise
sources. At no stage did we intervene in the process of
signal segmentation, extraction, or classification. Thus,
we did not vet the results of the segmentation algorithm
before running the feature extraction and clustering. The
steps thus form a single processing pipeline. Some indi-
cation of the accuracy of the segmentation technique is
given by Figure 3. More convincing evidence of the abil-
ity of the segmentation technique to do a reasonable job
is provided by the results of the signal classification al-
gorithm – since the classification/clustering procedure is
built on top of the segmentation and extraction proce-
dures, it cannot perform well if the segmentation proce-
dure does not.

The unsupervised classification technique described
produced 19 distinct call types after processing ≈ 11
hours of humpback recordings. As noted, the segmen-
tation technique described in Section II is not perfect,
and a cursory inspection of the 19 call types identifies
9 of them as describing ’noise’ clusters, rather than ac-
tual humpback vocalizations – leaving 10 distinct types
of humpback call identified. Despite the fact that the sig-
nal segmentation procedure produces a number of false
positives, the ability of the algorithm to group mistak-
enly isolated noise into distinct categories based on their
spectral characteristics is pleasing, and is an indication
of the robustness of the technique. Figures 8 to 15 show
randomly chosen extracts from the 11 hours of recording
with labels attached to indicate the ‘category’ to which
each vocalization has been assigned. To keep the figures
clear, ‘noise’ categories mentioned above are excluded.
A few representative samples of each signal category are
circled, with the rest simply having their category listed
above the call. Some vocalizations that a human might
consider similar are grouped separately (for example, 10
and 9), but we can see that the technique overall does a
good job of grouping similar vocalizations.

FIG. 9:

FIG. 10:

FIG. 11:
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FIG. 12:

FIG. 13:

FIG. 14:

FIG. 15:
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Stage Parameter
Call Detection FFT size and step
Call Detection Signal frequency range
Call Detection Detection segment size

Feature Extraction VQ codebook size
Clustering Number of initial categories
Clustering HMM state duration constant

TABLE I: The complete list of user-supplied parameters re-
quired for end-to-end processing of raw sound data to clus-
tered vocalizations.

VI. DISCUSSION

The good results achieved for humpback vocalizations
demonstrate the power of these techniques. The vocal-
izations of humpbacks are particularly complex and they
were all recorded under noisy real-world conditions. The
technique succeeded in grouping similar calls together de-
spite significant variations in signal levels, interference
from other oceanic sounds, and recording equipment fluc-
tuations.

The techniques require minimal manual configuration.
Table I lists all user-specified parameters Essentially the
users need only specified the broad character of the tar-
get vocalizations. Little effort was made to tailor the
technique specifically for humpback vocalizations, and
yet the achieved results were better than, or equal to
previous specialized attempts in that domain ([6, 18]).

The simple approach described performs well, but we
see many areas where the technique could be improved.
The greatest improvement would be gained, we believe,
by incorporating human feedback into the process. The
segmentation procedure, for example, makes no attempt
to use spectral features to differentiate noise and signal.
While this has the advantage of keeping the technique
simple and general, it does degrade performance. The
ideal procedure, we believe, is to begin by making few as-
sumptions about the spectral characteristics of the target
signal, and then, after human input, rerun the algorithm
with the benefit of this human expertise. For example,
it is clear to any humpback expert (and indeed any non-
expert who has spent some time listening to humpback
calls) that 9 of the 19 ‘classes’ produced by the classifica-

tion algorithm are in fact ambient noise. If an expert can
indicate this, and inform the program which ‘classes’ are
just constituted of noise, the remaining classes, confirmed
as containing actual humpback vocalizations, could be
used to rerun the segmentation detection, but this time,
both positive and negative examples (i.e. of noise and
of signal) would be available. By looking for the distin-
guishing properties between the two, it should be possible
to do substantially better than in the initial run, where
no positive or negative examples are available. In effect,
with only the brief intervention of an expert, it would
be possible to ‘bootstrap’ the whole procedure from an
unsupervised task to a supervised one, and yet this could
be done with much less effort than in a wholly supervised
procedure. The manual segmentation and classification
of vocalizations by an expert would be reduced to the
brief vetting of results produced by the initial unsuper-
vised run.

Another area of improvement lies in allowing a human
to vary the penalty function, producing either more, or
fewer categories. We do not claim that the MDL-based
penalty function employed produces the ‘correct’ number
of clusters – indeed, we believe such a notion makes no
sense. However, in this application, the technique does
group calls in a way remarkably similar to human experts,
who also typically recognise from around a half dozen to
a dozen distinct types of call (see [5, 18, 28, 29, 42, 44]).
The effect of the penalty function applied is to concen-
trate computational effort in looking for simpler models
that fit the data. This is done not because simpler mod-
els are more probable (i.e. in the Bayesian prior sense),
but because they are more preferable, since they are more
comprehensible. If the aim is to maximize human intel-
ligibility, then it makes sense for a human to have some
input to the process. A human could do this quite sim-
ply by indicating if too many (or too few) classes were
produced, and the penalty function could be adjusted
accordingly.
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