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Abstract. This paper investigates the steady state relationships between key central
cardiovascular variables (i.e. stroke volume, heart rate, total peripheral resistance and
cardiac output) and oxygen uptake rate (V̇ O2) during moderate incremental exercise.
Ten untrained normal males exercised in an upright position on an electronically
braked cycle ergometer with constant workloads ranging from 25 Watt to 125 Watt.
Throughout the experiment V̇ O2 was determined breath by breath and heart rate (HR)
was monitored beat by beat. During the last minute of each exercise session, cardiac
output was measured beat by beat using a novel non-invasive ultrasound based device
and blood pressure was measured using a tonometric measurement device. Based on
the analysis of experimental data, nonlinear steady state relationships between key
central cardiovascular variables and V̇ O2 were qualitatively observed except for HR
which increased linearly as a function of increasing V̇ O2. Quantitative descriptions
of these complex nonlinear behaviours were provided by nonparametric models which
were obtained by using Support Vector Regression.

Keywords: Cardiovascular models, Non-invasive measurement, Oxygen uptake rate,

Support Vector Regression, Upright cycle ergometer exercise.
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1. INTRODUCTION

The cardiovascular response to exercise has been widely documented by several

investigators (Dexter, Whittenberger, Haynes, Goodale, Gorlin & Sawyer 1951) (Barger,

Richards, Metcalfe & Gunther 1956) (Freedman, Snider, Brostoff, Kimelblot & Katz

1955) (Reeves, Grover, Filley & Blount 1961a) (Reeves, Grover, Filley & Blount 1961b)

(Rowland, Popowski & Ferrone 1997) (Kobayashi, Andoh, Fujinami, Nakayama, Takada,

Takeuchi & Okamoto 1978) (Reeves, Grover & Filley 1961) (Bevegard, Freyschuss &

Strandell 1966) (Astrand, Cuddy, Saltin & Stenberg 1964) (Denniston, Maher, Reeves,

Cruz, Cymerman & Grover 1976) (Stenberg, Astrand, Ekblom, Royce & B 1967) (Turley

& Wilmore 1997) (Fairbarn, Blackie, McElvaney, Wiggs, Pare & Pardy 1994) (Allor,

Pivarnik, Sam & Perkins 2000) (Richard, Lonsdorfer-wolf, Dufour, Doutreleau, Oswald-

Mammosser, Billat & Lonsdorfer 2004). Some of the reports demonstrated a linear

function between the cardiac output (CO) and oxygen uptake rate during steady state

of graded exercise, with a slope of approximately 5-6 in normal and athletic subjects

(Rowell 1986). However, Reeves (Reeves et al. 1961a) (Reeves et al. 1961b) investigated

the circulatory changes in normal people during rest and during mild supine exercise

and suggested that the linear relationship between cardiac output and oxygen uptake

existed during supine rest, but for variations in metabolic demands ranging from rest to

heavy exercise, there was not a simple linear relationship. For the heart rate response

to oxygen uptake rate, a linear relationship was found by the researchers (Fairbarn

et al. 1994) (Turley & Wilmore 1997). However, for the other cardiovascular variables

such as stroke volume (SV) and total peripheral resistance (TPR), the earlier reports

(Reeves et al. 1961b) (Richard et al. 2004) (Rowland, Popowski & Ferrone 1997) (Reeves,

Grover & Filley 1961) (Dexter et al. 1951) (Astrand et al. 1964) described the nonlinear

behaviour of the change of oxygen uptake rate during graded levels of exercise, but no

suitable models were presented.

It is of considerable physiological interest to investigate suitable models to reflect the

real function between cardiovascular variables and metabolic demand. However, because

of the complexity of physiological responses it may not be appropriate to describe the

response of human cardiovascular system to exercise by a fixed model structure. In this

study, an efficient nonparametric nonlinear regression method, Support Vector Machine

based regression (Vapnik 1995) (Support Vector Regression (SVR)) was introduced to

model the non-linear characteristics of cardiovascular variables to exercise. SVR is a new

technique, which has been successfully applied to nonlinear function estimation. The

formulation of SVM embodies the structure of the risk minimization (SRM) principle,

which has been shown to be superior to other traditional empirical risk minimization

principles (Vapnik 1995). We have applied SVR to model the nonlinear relationships

of the cardiovascular response to exercise and obtained several valuable results. In

order to show the effectiveness of SVR, traditional linear regression is also performed.

These two approaches are evaluated by the difference (Mean Square Error) between the

predicted and actual cardiovascular response value change to metabolic demand. The
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results demonstrate the efficiency and advantages of SVR.

The rest of the paper is organized as follows: In Section 2, we introduce the details

of experiment design and data processing. Section 3 gives the experimental results

and analysis. Then SVR is applied to model the nonlinear relationships of the central

cardiovascular variables to exercise in Section 4. Finally, some conclusions are drawn in

Section 5.

2. METHODS

2.1. Subjects

We studied 12 normal male subjects. They are all active, but do not participate in

formal training or organized sports. However, since two of them could not complete 6

minutes of higher level exercise, only the data recorded from 10 subjects (aged 26 ±
5yr, height 176 ± 5cm, body weight 73 ± 12kg) are used for this study. All the subjects

knew the protocol and the potential risks, and had given their informed consent. The

protocol was approved by the Ethics Committee of the University of New South Wales.

2.2. Procedures

All tests were conducted in the Biomedical System Laboratory of The University of

New South Wales in Australia. A typical experimental scenario is shown in Figure 1.

The laboratory is air-conditioned with temperature maintained between 23-24 oC. Each

subject was studied during rest and during a series of exercise in an upright position

Figure 1. A typical experimental scenario.
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on an electronically braked cycle ergometer (Tunturi Exercise Cycle E6). The seat and

handlebar heights were set for each subject and held constant for all their tests. Exercise

was maintained at a constant workload for 6 minutes, followed by a period of rest. The

initial exercise level was 25W and each successive stint of exercise was increased in

25W steps until a workload of 125W was reached. The rest periods were increased

progressively from 5 to 15 minutes after each stint of exercise. Six minutes of exercise

was long enough to approach a steady state since the values of oxygen uptake rate and

the A-V oxygen difference had become stable by the 5th and 6th minutes even for near

maximum exertion (Reeves, Grover & Filley 1961).

2.3. Measurement and data processing

During the whole exercise and recovery stage, heart rate was monitored beat by

beat using a single lead ECG device, while ventilation and pulmonary exchange

were measured on a breath by breath basis. Minute ventilation was measured

during inspiration using a Turbine Flow Transducer model K520-C521 (Applied

Electrochemistry, USA). Pulmonary gas exchange was measured using S-3A and CD-

3A gas analyzers (Applied Electrochemistry, USA). Before each individual exercise test,

the turbine flow meter was calibrated using a 3.0 liters calibration syringe. Before

and after each test, the gas analyzers were calibrated using reference gases with known

O2 and CO2 concentrations (15.00 ± 0.02 % O2, 4.0 ± 0.8 % CO2). The outputs

of ECG device, the flow transducer and the gas analyzers were interfaced to a laptop

through an A/D converter (National Instruments DAQ 6062E in 12-bit resolution) with

a sampling rate of 500 Hz. Programs were developed in Labview 7.0 for breath by

breath determination of pulmonary gas exchange variables but with particular reference

to V̇ O2 ( V̇ O2 STPD). The ECG signals were pre-processed using band-pass filtering,

the differentiation technique, squaring and moving average. The HR was then detected

by finding the top point of the R wave. This method of HR detection is more reliable

without missing or mis-calculating any single beat. The oxygen uptake rate and heart

rate were later reduced to one minute average based on the data collected in the last

minute of the six minute exercise carried out for each workload.

Beat by beat cardiac output was measured non-invasively using an ultrasound based

device (USCOM, Sydney, Australia) in the last minute of each workload. This device has

previously been reported to be both accurate and reproducible (Knobloch, Lichtenberg,

Winterhalter, Rossner, Pichlmaier & Philips 2005). All the cardiac output measurement

was conducted by means of a Doppler transducer (2.2 MHz) at the tip of a flexible probe.

The USCOM unit uses Continuous Wave Doppler ultrasound technology to provide key

haemodynamic information.

Typically, the flow velocity signal is sampled at the aortic valve by putting a

ultrasound probe on the suprasternal notch. However, it is often difficult to obtain

a clear stable signal at this position during exercise because of the artefact introduced

by a subject’s respiratory movement. So, in this study, the probe was positioned above
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the right supraclavicular fossa area, lateral to the sternocleidomastoid muscle, pointing

toward the aortic valve. Therefore, the flow velocity signal we measured is somewhere

along the ascending aorta rather than at the aortic valve level. The flow volume is

smaller than the actual value, but we believed that the proportional change in the

estimation of SV from this flow signal would correspond to the proportional change

of the actual stroke volume. During all the measurements, an attempt was made to

consistently obtain a flow velocity signal from the same region of the aorta by measuring

the flow velocity waveform at the same position, that is, above the right supraclavicular

fossa area and with a similar beam angle for every exercise workload. Also, the flow

waveform was checked in each measurement to make sure it had a similar profile to that

in previous measurement. Furthermore, all the measurements were conducted by the

same person. A novel method was used in this study to improve the accuracy of the

cardiac output measurement. During the measurement, the Doppler spectral profile was

streamed to a computer via an Ethernet port. Streaming is performed using Windows

Sockets which was programmed by Microsoft Visual C++ (version 6.0). The Windows

Socket implementation uses TCP, therefore all packets are guaranteed to reach the client.

Figure 2(a) shows the Doppler spectral image. The outline contour of the velocity curve

(see Figure 2(b)) over time was traced with integration of the velocity time integral

(VTI). The end of each VTI was taken as the observed closure of the aortic valve. Values

of VTI were averaged from 5-10 curves with highest values which demonstrated crisp

spectral envelopes. As stated above, these measurements were taken during the final

minute of each workload.

The cross section area of the ascending aorta was calculated based on the following

formulas (Nidirf, Picard, Triulzi, Thomas, Newell, King & Weyman 1992):{
D = 0.01×Ht(cm) + 0.25,

S = (D
2
)2 × π,

(1)

where D is aortic annulus diameter, Ht is the height of the subject and S is the cross
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Figure 2. Images for blood velocity measurement: a) Doppler spectral image (left).
b) The outline contour of the velocity curve (right).
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section area. Cardiac output was calculated as the product of Doppler estimated stroke

volume (V TI × S) and the heart rate.

Tonometric blood pressure measurement device (CBM-700, Colin, France) was used

to measure blood pressure non-invasively during the 5th and 6th minute of each certain

level of exercise.

3. RESULTS

The highest workload in our test was 125W. In order to define the exercise intensity, first

the maximal rate of oxygen uptake (V̇ O2max) was determined for each subject based on

the procedure proposed by Astrand and Rhyming (Astrand & Ryhming 1954), where

heart rate and relative oxygen uptake were taken for the determination of V̇ O2max. The

values used for heart rate and oxygen uptake rate refer to the last minutes of exercise on

the workload of 125W or 100W. Then V̇ O2 at workload of 125W (the highest workload

in this test) in percentage of V̇ O2max for individuals was calculated. The data are shown

in Table 1.

Subject Measured V̇ O2 Calculated V̇ O2max V̇ O2 at 125W

at 125W (liter/min) (liter/min) in percentage of V̇ O2max

No.1 2.0 2.85 70%

No.2 1.9 3.05 62%

No.3 1.84 3.4 54%

No.4 1.95 3.3 59%

No.5 1.41 1.9 74%

No.6 1.87 2.55 73%

No.7 2.85 4.8 59%

No.8 1.6 2.2 72%

No.9 2.52 4.0 63%

No.10 1.81 2.7 67%

Table 1. Oxygen uptake at workload of 125W in percentage of maximal oxygen uptake
for individuals

Aerobic exercise intensity can be characterized as low, moderate or high (American

College of Sports Medicine 1993). Moderate intensity of exercise is that eliciting 50% to

74% of V̇ O2max. Exercise eliciting a lower response is considered as low intensity, and

eliciting a greater response is considered as high intensity. In Table 1, we know that

V̇ O2 (at workload of 125W) for all the subjects ranges from 54% to 74% with respect to

their V̇ O2max. This indicates that for those subjects, our exercise test can be classified

as of moderate intensity.

For the work performance, because of variations in fitness among different

individuals when they do exercise on cycle ergometer, oxygen consumption rate has

been taken as the measure of work intensity.
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Figure 3. Heart rate response to oxygen uptake rate for the ten subjects: a) absolute
value (left). b) relative value (right).
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Figure 4. Mean arterial blood pressure response to oxygen uptake rate for the ten
subjects: a) absolute value (left). b) relative value (right).

As we mentioned above, the blood flow velocity signal we measured was from the

position above the right supraclavicular fossa area. The calculated SV based on this

value is smaller than the actual value. So, the value can not be used in absolute

terms. For evaluation of stroke volume and cardiac output change, it is used as a

relative, rather than an absolute value. We also found that the relative responses of

cardiovascular system to exercise are more uniform than the absolute responses across

subjects. We present the comparison for just two cardiovascular parameter responses to

oxygen uptake rate in Figure 3 and Figure 4. Figure 3(a) shows the absolute value of

heart rate response to the absolute value of oxygen uptake rate for all the ten subjects,

while Figure 3(b) is the percentage change in heart rate relative to its value at rest with

the percentage change in oxygen uptake rate to its value at rest for the ten subjects.

Obviously, the response in Figure 3(b) is more consistent and gives clearer trend than

that in Figure 3(a). The same observation can be seen in Figure 4 as well. The mean

arterial blood pressure (MBP) response to oxygen uptake rate (both in absolute value)
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Figure 5. Cardiovascular variable changes in percentage with respect to their rest
value with the percentage change in V̇ O2 for the ten subjects: a) Percentage change in
SV to percentage change in V̇ O2 (top left). b) Percentage change in HR to percentage
change in V̇ O2 (top right). c) Percentage change in TPR to percentage (bottom left).
d) Percentage change in CO to percentage (bottom right).

in Figure 4(a) demonstrates a more scattered distribution than that in Figure 4(b)

where the relative value was used. Both Figure 3 and Figure 4 imply that the relative

response of cardiovascular system to exercise has more consistent trend than the absolute

responses do. It is thus reasonable to believe that modelling of cardiovascular responses

using relative changes gives more robust results than modelling with the absolute value.

Based on the above findings, we model stroke volume, heart rate, total peripheral

resistance and cardiac output to exercise by modelling their percentage changes with

respect to their corresponding rest value with the percentage change in V̇ O2 with respect

to its rest value. We use SV%, HR%, TPR% and V̇ O2 % to represent their relative

value (expressed as percentage), respectively.

Figure 5 shows the relative change of SV, HR, TPR and CO to the relative change

of V̇ O2. All the subjects demonstrated fairly uniform response to the various levels of

exercise. Figure 6 presents a comparison of our data with that of Bevegard (Bevegard,

Freyschuss & Strandell 1966) where cardiac output was determined by the direct Fick

procedure with analysis of oxygen saturation and hemoglobin concentration of the blood
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Figure 6. Percentage change in cardiac output to percentage change in oxygen uptake
rate from published report by Bevegard (Bevegard, Freyschuss & Strandell 1966). The
thin lines are for the individual people and the bold line is the mean of the individuals.

spectrophotometrically according to Drabkin. Our data is quite consistent with the

data reported by Bevegard (6). The range of V̇ O2 changes from 0 to 600, while the

corresponding range of CO changes from 0 to 200

Figure 5(a) shows the relationship of SV% change comparing with V̇ O2%. The SV

increases by about 20% while the V̇ O2 increased by 300%. Then the SV% began to

level off, whereas the V̇ O2 % continues to increase. In this study, we observed that SV

can increase between 21% and 31% before reaching to a plateau.

SV represents the amount of blood ejection from the heart during each beat. It

equals end-diastolic volume (EDV) minus end-systolic volume (ESV). Exercise-induced

increases in SV are believed to be the results of the increased EDV and the decreased

ESV. A greater venous return of blood to the heart during exercise results in a greater

EDV. Meanwhile, according to Frank-Starling law, a stronger stretch is placed on the

muscle fibers of the heart resulting in a more forceful contraction of those fibers, and

consequently, a decreased ESV. However, with the increase of workload, the heart rate

increases, thus reducing the diastolic filling time which then limits any further increase

of EDV.

Although some investigators have suggested that stroke volume may continue to

increase at higher levels of exercise (Chapman, Fisher & Sproule 1960), our observations

are similar to those who found that stroke volume, after increasing promptly with

low levels of exertion, reaches a plateau and does not increase progressively as

exertion becomes more intense (Astrand et al. 1964) (Knobloch et al. 2005) (Plotnick,

Becker, Fisher, Gerstenblith, Renlund, Fleg, Weisfeldt & Lakatta 1986) (Rodeheffer,

Gerstenblith, Becker, Fleg, Weisfeldt & Lakatta 1984) (Thadani & Parker 1978).

During exercise, a combination of parasympathetic withdrawal and sympathetic

activation leads to an increase in heart rate to satisfy energy demands of the working
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muscles. Both somatic exercise reflexes and central command mechanisms mediate those

autonomic changes. Figure 5(b) demonstrates that HR% rises linearly with the rise of

V̇ O2 %. The average increase for the heart rate is as high as 130% when V̇ O2 increases

by 500%.

The sum of all the factors that oppose blood flow in the systemic circulation is

expressed by the term total peripheral resistance which is calculated as MBP/CO.

TPR% has been examined in relation to V̇ O2% in Figure 5(c). Inspection of these

data indicates that a marked percentage decrease in TPR occurs during lower intensity

exercise until the point where oxygen uptake rate rises approximately 3 times its resting

value, and then little decrease or even no decrease is observed when V̇ O2 increases

further. During exercise, the increase of metabolic demand of working skeletal muscles

results in a very large increase in blood flow to the muscles. This leads to a reduction in

the resistance of vessels supplying muscles and skin. On the other hand, as resistance

in those vessels that supply the non-exercising tissue is increased, blood flow to those

areas of the body is reduced. TPR decreases during exercise because vasoconstriction in

non-exercising tissue is not enough to compensate for the vasodilation in active muscles.

But when the resistance vessels dilate to near maximum, little further change is possible,

although the metabolic demand may continue to increase in the working muscle.

Cardiac output, which is the product of heart rate and stroke volume can increase

between 170% to 230% with respect to its resting value when V̇ O2 increases to 500 %

(Figure 5(d)). But the rate of increase is diminished thereafter. Obviously there is not

a simple linear relationship between CO% and V̇ O2% for higher degrees of exertion.

The exercise-induced increase of CO is due to alterations of both HR and SV. From

Figure 5(a) and Figure 5(b), we can conclude that the increase in CO at lower workload

is due to both increasing in HR and SV. But at higher exercise intensity, increasing HR

is largely responsible for the observed increases in CO. However, although the rise in

HR% (see Figure 5(b)) compensates for the plateau in SV %, it is not enough to permit

CO % to increase as sharply as it does in the lower workload. That is the reason why

CO % shows a slower rate of increase at higher workload.

Only Figure 3(b) demonstrates a linear characteristic between HR % and V̇ O2 %.

However, the other 3 figures (Figure 5(a), Figure 5(c) and Figure 5(d)) do not depict

clear evidence of response linearity. In contrast, both Figure 5(a) and Figure 5(c) go to

a plateau from the middle range of the response.

4. MODELING

Nonlinear steady state relationships between key central cardiovascular variables and

V̇ O2 were qualitatively observed except for HR which increased linearly as a function

of increasing V̇ O2. To quantitatively describe these complex nonlinear behaviours, a

powerful nonlinear regression approach - Support Vector Regression was utilized to

model the respective relationships. In order to show the effectiveness of SVR, traditional

linear regression was also performed. These two approaches are compared using the
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difference (Mean Square Error) between predicted and actual percentage change in

cardiovascular response to percentage change in V̇ O2.

4.1. Support Vector Machine based regression

Support Vector Machine (SVM) is firmly grounded in the framework of statistical

learning theory, which is a small sample statistical theory introduced by Vapnik

(Vapnik 1995). It has been widely applied in classification, forecasting and regression.

Their practical success can be attributed to solid theoretical foundations based on

VC-theory (Cherkassky & Ma 2004). The detailed in-depth theoretical background

on SVM is introduced in (Vapnik 1995) (Vapnik & Lerner 1963) (Vapnik 1998)

(Schlkopf & Smola 2002) (Cherkassky & Ma 2004) (Thissen, Pepers, Ustun, Melssen &

Buydens 2004). In this section, only the essential basics of the so called ε-insensitivity

SVR based static nonlinearity modelling (Vapnik 1998) is described. This describes in

some detail the SVR method we used in this paper.

Let {ui, yi}N
i=1 be a set of inputs and outputs data points (ui ∈ U ⊆ Rd, yi ∈ Y ⊆ R,

N is the number of points). The goal of the support vector regression is to find a function

f(u) which has the following form

f(u) = w · φ(u) + b, (2)

where φ(u) represents the high-dimensional feature spaces which are nonlinearly

transformed from u. The coefficients w and b are estimated by minimizing the

regularized risk function:

1

2
‖w‖2 + C

1

N

N∑
i=1

Lε(yi, f(ui)). (3)

The first term is called the regularized term. The second term is the empirical error

measured by ε-insensitivity loss function which is defined as:

Lε(yi, f(ui)) =

{
|yi − f(ui)| − ε, |yi − f(ui)| > ε

0, |yi − f(ui)| ≤ ε
(4)

This defines an ε tube. The radius ε of the tube and the regularization constant C are

both determined by user.

By solving the above constrained optimization problem, we have

f(u) =
N∑

i=1

βiφ(ui) · φ(u) + b. (5)

where the coefficients βi corresponds to each (ui, yi). The support vectors are the input

vectors uj whose corresponding coefficients βj 6= 0.

By the use of kernels, all necessary computations can be performed directly in the

input space, without having to compute the map φ(u) explicitly. After introducing

kernel function k(ui, uj), the above equation can be rewritten as follows:

f(u) =
N∑

i=1

βik(ui, u) + b, (6)
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For linear support regression, the kernel function is thus the inner product in the

input space:

f(u) =
N∑

i=1

βi < ui, u > +b. (7)

For nonlinear SVR, there are a number of kernel functions which have been found

to provide good generalization capabilities, such as polynomials, radial basis function

(RBF), sigmoid. Here we give the polynomial and RBF kernel functions as follows:

• RBF kernel: k(u, u′) = exp(−‖u−u′‖2
2σ2 ),

• Polynomial kernel: k(u, u′) = ((u · u′) + h)p.

Brief introduction of SVR regression can be found in papers (Su, Wang, Celler,

Savkin & Guo 2007) (Su, Wang, Celler & Savkin 2007). Details about SVR, such as

the selection of radius ε of the tube, kernel function, and the regularization constant C,

can be found in (Vapnik 1998) (Schlkopf & Smola 2002) (Guo, Bartlett, Shawe-Taylor

& Williamson 2002).

4.2. Model identification

Examining the relationships between central cardiovascular variables and oxygen uptake

rate during exercise is fundamental to the study of exercise physiology. In this study, we

applied both Support Vector Regression and traditional linear regression (we use Least-

Square linear regression) to investigate the relationships between relative percentage

change of cardiovascular variables (SV%, HR%, TPR% and CO%) and V̇ O2 %. The

measurement of model performance adopted throughout this paper is the Mean Square

Error (MSE):

MSE =
1

n

n∑
i=1

(xi − x̂i)
2. (8)

where xi is the observed value and x̂i is the predicted value.

Relation SV%vsV̇ O2% HR%vsV̇ O2% TPR%vsV̇ O2% CO%vs V̇ O2%

Kernel Polynomial Polynomial RBF RBF

Parameter d=2 d=1 σ = 400 σ = 300

Constant C 50 30 5000 5000

ε-insensitivity 4.5 16 8 25

Support vectors number 8 (13.3%) 20 (33.3%) 17 (28.3%) 8 (13.3%)

Estimation error (MSE) 8 159 35 233

Table 2. Details about the estimation of the relationships between cardiovascular
variables and oxygen uptake rate using SVR
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Figure 7. Comparison of the estimation of percentage change in SV from percentage
change in V̇ O2 between using SVR and LS: a) SVR (left). b) LS (right).

Relation SV%vsV̇ O2% HR%vsV̇ O2% TPR%vsV̇ O2% CO%vs V̇ O2%

Linear Regression 21 159 146 304

SVR 8 154 35 233

Table 3. Estimation errors comparison (MSE) between using SVR and using linear
regression method

As discussed in Subsection 4.1, the performance of the model using SVR depends

on the selection of kernel function and several design parameters including capacity

(C) and insensitivity region (ε). To model the steady state relationship between SV

% and V̇ O2 % in graded exercises using SVR, the polynomial kernel is selected as its

performance is comparable to that of the model using linear regression methods. The

best setting obtained in the present study for the rest parameters was also found (see

Table 2) and the comparison results between SVR and traditional linear regression

in terms of MSE is shown in Table 3 and Figure 7. In Figure 7(a), the continuous

curve stands for the estimated input output steady state relationship. The dotted lines

indicate the ε-insensitivity tube. The plus markers are the points of input and output

data. The circled plus markers are the support points. It is obvious that the use of

SVR leads to performance improvement in terms of MSE which decreases from 21 to

8. Both the result in Table 3 and the regression figures in Figure 7 indicate that the

relationship between SV% and V̇ O2 % during steady state exercise is nonlinear. This

result is consistent with the previous reports (Astrand et al. 1964) (Cautero, Prampero

& Capelli 2003) (Knobloch et al. 2005).

Although other researchers (Freedman et al. 1955) (Reeves et al. 1961b) (Richard

et al. 2004) (Rowland, Popowski & Ferrone 1997) (Reeves, Grover & Filley 1961) (Dexter

et al. 1951) (Astrand et al. 1964) have described the nonlinear behaviour between stroke

volume and V̇ O2, they did not demonstrate the relationship from the viewpoint of

modelling. We present here for the first time a nonparametric modelling method (that
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Figure 8. Comparison of the estimation of percentage change in HR from percentage
change in V̇ O2 between using SVR and LS: a) SVR (left). b) LS (right).
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Figure 9. Comparison of the estimation of percentage change in TPR from percentage
change in V̇ O2 between using SVR and LS: a) SVR (left). b) LS (right).

is SVR) to model the relationship between SV% and V̇ O2 %. The results (Table 2

and Table 3) show the advantages and efficiency of SVR. In SVR, the solution to the

problem is only dependent on a subset of training data points which are referred to as

support vectors. Using only support vectors, the same solution can be obtained as using

all the training data points. To get the relationship between SV% and V̇ O2 %, SVR

uses just 13% of the total points available to model their nonlinear behaviour efficiently

and decreases MSE by 62 % compared with that for linear regression.

In presenting the steady state relationship between variations of HR% to V̇ O2

%, the results turn out that in all but one case to be an order 1 polynomial kernel,

which implies a linear relationship (see Figure 8 and Table 3). This suggests that the

percentage increase in HR indeed increases linearly as a function of V̇ O2 %. This result

agrees with the previous researchers (Turley & Wilmore 1997) (Vapnik 1998).

As shown in Figure 9, the SVR model describes how the TPR % fell with the lower

workload and remained relatively constant even with the increasing workload. SVR uses
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Figure 10. Comparison of the estimation of percentage change in CO from percentage
change in V̇ O2 between using SVR and LS: a) SVR (left). b) LS (right).
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Figure 11. Comparison of the test results of estimating percentage change in SV from
percentage change in V̇ O2 between using SVR and using linear regression.

just 28 % of the total points to get an efficient nonlinear model. Compared with linear

regression, the SVR model decreases MSE from 146 to 35, an improvement of 76 %.

Cardiac output has been widely demonstrated to increase as a linear function of

oxygen uptake rate during steady state incremental exercise (Freedman et al. 1955)

(Allor et al. 2000) (Astrand et al. 1964) (Capelli, Cautero & Prampero 2001). However,

our results show that the increase in CO% with respect to V̇ O2 % can be best described

by a nonlinear model (that is SVR), which improves the MSE by 23% compared to

linear regression.

4.3. Model verification

From the above analysis, we know that the relationship between HR% and V̇ O2 % is

linear and can be modelled using simple linear regression. So, the model verification

excludes this model.



Modelling of Human Cardiovascular Response to Moderate Exercise 16

0 100 200 300 400 500 600
−70

−60

−50

−40

−30

−20

−10

0

percentage change in  oxygen uptake rate

pe
rc

en
ta

ge
 c

ha
ng

e 
in

 to
ta

l p
er

ip
he

ra
l r

es
is

ta
nc

e

testing SVR model

0 100 200 300 400 500 600
−70

−60

−50

−40

−30

−20

−10

0

percentage change in oxygen uptake rate

pe
rc

en
ta

ge
 c

ha
ng

e 
in

 to
ta

l p
er

ip
he

ra
l r

es
is

ta
nc

e 

testing LS model 

Figure 12. Comparison of the test results of estimating percentage change in TPR
from percentage change in V̇ O2 between using SVR and using linear regression.
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Figure 13. Comparison of the test results of estimating percentage change in CO
from percentage change in V̇ O2 between using SVR and using linear regression.

Relation SV%vsV̇ O2% TPR%vsV̇ O2% CO%vs V̇ O2%

Kernel Polynomial RBF RBF

Parameter d=2 σ= 400 σ= 350

Constant C 50 5000 5000

ε-insensitivity 3.5 8 20

Support vectors number 10 11 10

(24 % ) (27.6% ) (22.8 % )

Table 4. Details about the estimation of the relationship between cardiovascular
variables and oxygen uptake rate based on training data (70% of the data)

To further evaluate the feasibility of SVR model, the whole data set is divided

into two parts: the first part (70 % of the data) is used to design the model and the

second part (30 % of the data) is used to test its performance. The SVR model was
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established using the training data points through tuning of three design parameters

(kernel function, loss function, and capacity value). In Figure 11 to Figure 13, we present

the testing results for each situation. For each testing situation, selected parameters are

shown in Table 4. Table 5 is the comparison of MSE between SVR and traditional linear

regression.

Relation SV%vsV̇ O2% TPR%vsV̇ O2% CO%vs V̇ O2%

LR training error 18 127 272

LR test error 30 156 394

SVR training error 7 32 203

SVR test error 10 51 284

Table 5. Estimation error (MSE) comparison between using SVR and using linear
regression for both the training and the test

The results obtained on the testing data indicate that the SVR model outperforms

the traditional linear regression as indicated, by modelling the trend of the data more

closely as well as obtaining a lower MSE. Even for the relationship of cardiac output and

oxygen consumption, the testing error (MSE) of SVR (284) is very much less than that

of traditional linear regression method (394), further indicating that the SVR model

provides superior accuracy. Moreover, all the proposed models outperform the linear

regression models in error reduction both in the training data set and the testing data

set.

Both the comparison figures presented in Figure 11 to Figure 13 and MSE shown in

Table 5 indicate that SVR compare favourably with traditional linear regression. One

reason is that SVR are based on the structural risk minimization inductive principle,

which seeks to minimize an upper bound of the generalization error consisting of the

sum of the training error and a confidence level. As the structure of the model become

more complex, the risk term decreases and the confidence interval increases. Therefore,

SVR implements a right balance between the quality of the approximation of the given

data and the complexity of the approximating function. Normally, for a given data set, a

model with too complex a structure often results in poor generalization performance and

over-fitting phenomena, despite having a good learning performance. However, a good

SVR model can be obtained by selecting the three design parameters (kernel function,

loss function, and capacity value). The best model can implement a trade-off between

training errors and model complexity so as to achieve a high generalization performance

and solve the over-fitting problem. Another key characteristic of SVR is that it applies

the kernel methods implicitly to transform data into a feature space, and uses linear

regression to get a nonlinear approximation function in the feature space (Vapnik 1995).

Consequently, SVR is a convex optimization tool. It is very efficient in terms of speed

and complexity (Guo et al. 2002).
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5. CONCLUSIONS

This paper investigates experimentally the steady state relationships between key central

cardiovascular variables and oxygen uptake during incremental exercise. Reliable data

were collected and the experimental results demonstrate previously unknown nonlinear

behaviour of some cardiovascular variables to exercise. A Support Vector Machine, a new

powerful machine learning method based on statistical learning theory was introduced

in the modelling of the cardiovascular system response.

When comparing the performance of SVR methods to simple linear regression

methods for modelling the cardiovascular response to exercise, two conclusions can be

drawn. Firstly, the increase in CO % as a function of V̇ O2 % can be best described by

a nonlinear model (SVR), although this relationship has been widely presented in the

literature as a linear function during incremental steady state exercise. Secondly, for

changes in stroke volume and total peripheral resistance during steady state incremental

exercise, previous researchers described their nonlinear behaviour without attempting

to present suitable models. In this paper we clearly demonstrate that changes of SV

and TPR with V̇ O2 are non linear.

This study demonstrates that SVR is a new and effective method that can be used

satisfactorily to model cardiovascular responses to moderate exercise in normal subjects.

Because SVR introduces regularization terms in the loss function, the over-fitting

problem is successfully solved. That means that even if new subjects are recruited to

carry out the experimental protocol, the regression models will still provide a reasonable

dimension and maintain model robustness.

In this study, we estimate cardiovascular variables for moderate exercise only (less

than 125 w). We believe that over a wider range of exercise intensity, the nonlinearities

would become more evident, and the nonlinear modelling approach (Vapnik 1995)

(Ruhe & P.Wedin 1980) (Su, Wang, Celler, Savkin & Guo 2007) (Su, Wang, Celler

& Savkin 2007) (Su, Huang, Wang, Celler, Savkin, Guo & Cheng 2007) (Cheng, Savkin,

Celler, Su & Wang 2008, will appear) would prove much more effective than the linear

one.

Another important fact we found in this study is that relative responses (percentage

changes with respect to rest value) of the cardiovascular system to exercise are

more uniform than absolute responses (see Section 3). This would suggest that

across individual subjects, the variability in baseline values, possibly related to basal

metabolism, is greater than the variability in cardiovascular response to exercise.
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