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Suitability of four stomatal conductance models in agro-pastoral ecotone in North China: A
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Abstract: The suitability of four popular empirical and semi-empirical stomatal conductance models
( Jarvis model Ball-Berry model Leuning model and Medlyn model) was evaluated based on para—
llel observation data of leaf stomatal conductance leaf net photosynthetic rate and meteorological
factors during the vigorous growing period of potato and oil sunflower at Wuchuan experimental sta—
tion in agro-pastoral ecotone in North China. It was found that there was a significant linear relation—
ship between leaf stomatal conductance and leaf net photosynthetic rate for potato whereas the line—
ar relationship appeared weaker for oil sunflower. The results of model evaluation showed that Ball-
Berry model performed best in simulating leaf stomatal conductance of potato followed by Leuning

model and Medlyn model while Jarvis model was the last in the performance rating. The root—

mean-square error ( RMSE) was 0.0331 0.0371 0.0456 and 0.0794 mol * m™> * s™'  the normal-
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ized root-mean-square error ( NRMSE) was 26.8% 30.0% 36.9% and 64.3% and R-squared
(R*) was 0.96 0.61 0.91 and 0.88 between simulated and observed leaf stomatal conductance of
potato for Ball-Berry model Leuning model Medlyn model and Jarvis model respectively. For
leaf stomatal conductance of oil sunflower Jarvis model performed slightly better than Leuning mod—
el Ball-Berry model and Medlyn model. RMSE was 0.2221 0.2534 0.2547 and 0.2758 mol * m™”
*s”' NRMSE was 40.3% 46.0% 46.2% and 50.1% and R* was 0.38 0.22 0.23 and 0.20
between simulated and observed leaf stomatal conductance of oil sunflower for Jarvis model Leuning
model Ball-Berry model and Medlyn model respectively. The path analysis was conducted to iden—
tify effects of specific meteorological factors on leaf stomatal conductance. The diurnal variation of
leaf stomatal conductance was principally affected by vapour pressure saturation deficit for both pota—
to and oil sunflower. The model evaluation suggested that the stomatal conductance models for oil

sunflower are to be improved in further research.

Key words: Jarvis model; Ball Berry model; Leuning model; Medlyn model; leaf net photosyn—
thetic rate; Li-6400 portable photosynthesis system.
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1 Table 1 Parameters of leaf stomatal conductance models
( gs) ( Pn) for potato and oil sunflower
( P<0.01) g. P,
) Model Parameter Potato Oil sunflower
R 0.61 g P Jarvis a 93.35 79.28
R’ 0.11. b -0.40 -0.40
P, g P, c -0.0062 ~0.0066
d 0.41 0.43
gs
e -6.15 -6.27
n; 0.0016 0.0002
Ball-Berry m, 9.16 12.52
g0 0.03 0.07
Leuning my 23.07 27.30
vPD, 0.34 0.50
g0 0.029 0.013
Medlyn my 5.76 9.55
g0 0.18 0.01
2
Table 2  Statistical results of simulated and observed leaf
stomatal conductance of potato and oil sunflower for model
calibration ( 7=126)
R RMSE NRMSE AIC
Crop Model (mol * (%)
m2es)
Jarvis 0.46 0.0363 36.1 -822
Potato Ball-Berry 0.71 0.0259 25.8 -914
Leuning 0.71 0.0263 26.2 -909
1 b Medlyn 0.67 0.0279 27.7 -896
(d) ( ) Jarvis 0.70 0.1285 25.1 -503
0il Ball-Berry 0.74 0.1154 22.5 -538
Fig.1 Relationship between leaf stomatal conductance and net sunflower Leuning 0.85 0.0886 173 _603
photosynthetic rate of potato ( a) and oil sunflower (b) . Medlyn 076 0.1120 21.9 —546

* % P<0.01.

The same below.
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2 (a) (h)
Fig.2 Comparison between simulated and observed leaf stoma—
tal conductance of potato ( a) and oil sunflower ( b) for model

calibration.

1:1  Dashed line showed 1: 1 line between simulated and

measured values. The same below.
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Table 3  Statistical results of simulated and observed leaf
stomatal conductance of potato and oil sunflower for model
validation

n R? RMSE NRMSE  AIC

Crop (mol (%)

Model m 25!

120 Jarvis 0.88 0.07%4 64.3 -59%4
Potato BallBerry 0.96 0.0331 26.8 =812
Leuning 0.61 0.0371 30.0 -783
Medlyn 0.91 0.0456 36.9 =735
417 Jarvis 0.38 0.2221 403 -1241
oil Ball Berry 0.22 0.2534 46.0 -1139
sunflower Leuning 0.20 0.2758 50.1  -1066
Medlyn 0.23 0.2547 462  -1135

3 (a) (h)
Fig.3 Comparison between simulated and observed leaf stoma—

tal conductance of potato ( a) and oil sunflower ( b) for model

validation.
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4
Table 4 Path analysis for the effects of meteorological factors on leaf stomatal conductance of potato
Indirect effect
Correlation Direct
coefficient effect Total PAR VPD T C,
PAR 0.052 0.098 -0.018 -0.2617 0.2219 0.0229
VPD -0.592** -1.392 0.826 0.0184 0.7992 0.0088
T -0.358** 0.891 -1.216 0.0244 —-1.2486 0.0074
C, -0.093 -0.135 0.025 -0.0167 0.0905 -0.0490
5
Table 5 Path analysis for the effects of meteorological factors on leaf stomatal conductance of oil sunflower
Indirect effect
Correlation Direct
coefficient effect Total PAR VPD T C,
PAR 0.471** 0.027 0.464 -0.0439 0.5104 -0.0029
VPD -0.675** -1.568 0.897 0.0008 0.8930 0.0036
T -0.189** 1.093 -1.269 0.0126 -1.2811 0.0004
C, -0.390* * 0.013 -0.389 0.0126 -0.4375 0.0361
3 C, c,-r°
C, 390
pmol * mol™ T C,
16
CoO, 0
Ball Berry  Leuning .
Medlyn ( RH) (VPD) ° RH
Jarvis Jarvis VPD RH=e,le..VPD=¢_—¢/( e,
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