Excited State Biexcitons in Atomically Thin MoSe<inf>2</inf>
- Publication Type:
- Journal Article
- Citation:
- ACS Nano, 2017, 11 (7), pp. 7468 - 7475
- Issue Date:
- 2017-07-25
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
3 Excited State Biexcitons in Atomically Thin MoSe2.pdf | Published Version | 3.1 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
© 2017 American Chemical Society. The tightly bound biexcitons found in atomically thin semiconductors have very promising applications for optoelectronic and quantum devices. However, there is a discrepancy between theory and experiment regarding the fundamental structure of these biexcitons. Therefore, the exploration of a biexciton formation mechanism by further experiments is of great importance. Here, we successfully triggered the emission of biexcitons in atomically thin MoSe2, via the engineering of three critical parameters: dielectric screening, density of trions, and excitation power. The observed binding energy and formation dynamics of these biexcitons strongly support the model that the biexciton consists of a charge attached to a trion (excited state biexciton) instead of four spatially symmetric particles (ground state biexciton). More importantly, we found that the excited state biexcitons not only can exist at cryogenic temperatures but also can be triggered at room temperature in a freestanding bilayer MoSe2. The demonstrated capability of biexciton engineering in atomically thin MoSe2 provides a route for exploring fundamental many-body interactions and enabling device applications, such as bright entangled photon sources operating at room temperature.
Please use this identifier to cite or link to this item: