A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances
- Publication Type:
- Journal Article
- Citation:
- Journal of Materials Chemistry A, 2017, 5 (35), pp. 18888 - 18895
- Issue Date:
- 2017-01-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
c7ta04415a.pdf | Published Version | 1.39 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
© 2017 The Royal Society of Chemistry. The ability to judiciously utilize gel-polymer electrolytes (GPEs) that replace liquid electrolytes is widely recognized as an attractive route to solving the safety concerns of Li-ion batteries (LIBs). In this context, novel LiNi0.8Co0.15Al0.05O2 (NCA)/graphite GPE and NCA/graphite-Si/C GPE batteries with high energy density and excellent electrochemical and safety performances are developed via in situ polymerization of pentaerythritol tetraacrylate (PETEA) in a liquid electrolyte. Notably, the capacity retention of NCA/graphite and NCA/graphite-Si/C GPE batteries after 200 cycles at the discharge rate of 5C is 92.5% and 81.2%, respectively, which are much larger than those implementing liquid electrolytes (i.e., only 55.9% and 51.4%, respectively). Interestingly, the GPE batteries also displayed considerably lower gas production, especially the graphite-Si/C anode battery, and did not undergo a violent combustion during the nail penetration test compared to the liquid electrolyte batteries. The markedly enhanced performances noted above can be attributed to the three-dimensional framework of the GPE which promoted the formation of a very tight protective film on the surface of the electrodes during cycling, thereby inhibiting the cyclable Li consumption and side reactions with the electrolyte. Furthermore, such a protective film effectively retained the structural integrity of the electrodes during the cycling process and reduced the heat reactions between the electrodes and electrolyte.
Please use this identifier to cite or link to this item: