Critical Assessment of Metagenome Interpretation - A benchmark of metagenomics software
Sczyrba, A
Hofmann, P
Belmann, P
Koslicki, D
Janssen, S
Dröge, J
Gregor, I
Majda, S
Fiedler, J
Dahms, E
Bremges, A
Fritz, A
Garrido-Oter, R
Jørgensen, TS
Shapiro, N
Blood, PD
Gurevich, A
Bai, Y
Turaev, D
Demaere, MZ
Chikhi, R
Nagarajan, N
Quince, C
Meyer, F
Balvočiutė, M
Hansen, LH
Sørensen, SJ
Chia, BKH
Denis, B
Froula, JL
Wang, Z
Egan, R
Don Kang, D
Cook, JJ
Deltel, C
Beckstette, M
Lemaitre, C
Peterlongo, P
Rizk, G
Lavenier, D
Wu, YW
Singer, SW
Jain, C
Strous, M
Klingenberg, H
Meinicke, P
Barton, MD
Lingner, T
Lin, HH
Liao, YC
Silva, GGZ
Cuevas, DA
Edwards, RA
Saha, S
Piro, VC
Renard, BY
Pop, M
Klenk, HP
Göker, M
Kyrpides, NC
Woyke, T
Vorholt, JA
Schulze-Lefert, P
Rubin, EM
Darling, AE
Rattei, T
McHardy, AC
- Publication Type:
- Journal Article
- Citation:
- Nature Methods, 2017, 14 (11), pp. 1063 - 1071
- Issue Date:
- 2017-10-31
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Sczyrba, A | en_US |
dc.contributor.author | Hofmann, P | en_US |
dc.contributor.author | Belmann, P | en_US |
dc.contributor.author | Koslicki, D | en_US |
dc.contributor.author | Janssen, S | en_US |
dc.contributor.author | Dröge, J | en_US |
dc.contributor.author | Gregor, I | en_US |
dc.contributor.author | Majda, S | en_US |
dc.contributor.author | Fiedler, J | en_US |
dc.contributor.author | Dahms, E | en_US |
dc.contributor.author | Bremges, A | en_US |
dc.contributor.author | Fritz, A | en_US |
dc.contributor.author | Garrido-Oter, R | en_US |
dc.contributor.author | Jørgensen, TS | en_US |
dc.contributor.author | Shapiro, N | en_US |
dc.contributor.author | Blood, PD | en_US |
dc.contributor.author | Gurevich, A | en_US |
dc.contributor.author | Bai, Y | en_US |
dc.contributor.author | Turaev, D | en_US |
dc.contributor.author |
Demaere, MZ |
en_US |
dc.contributor.author | Chikhi, R | en_US |
dc.contributor.author | Nagarajan, N | en_US |
dc.contributor.author | Quince, C | en_US |
dc.contributor.author | Meyer, F | en_US |
dc.contributor.author | Balvočiutė, M | en_US |
dc.contributor.author | Hansen, LH | en_US |
dc.contributor.author | Sørensen, SJ | en_US |
dc.contributor.author | Chia, BKH | en_US |
dc.contributor.author | Denis, B | en_US |
dc.contributor.author | Froula, JL | en_US |
dc.contributor.author | Wang, Z | en_US |
dc.contributor.author | Egan, R | en_US |
dc.contributor.author | Don Kang, D | en_US |
dc.contributor.author | Cook, JJ | en_US |
dc.contributor.author | Deltel, C | en_US |
dc.contributor.author | Beckstette, M | en_US |
dc.contributor.author | Lemaitre, C | en_US |
dc.contributor.author | Peterlongo, P | en_US |
dc.contributor.author | Rizk, G | en_US |
dc.contributor.author | Lavenier, D | en_US |
dc.contributor.author | Wu, YW | en_US |
dc.contributor.author | Singer, SW | en_US |
dc.contributor.author | Jain, C | en_US |
dc.contributor.author | Strous, M | en_US |
dc.contributor.author | Klingenberg, H | en_US |
dc.contributor.author | Meinicke, P | en_US |
dc.contributor.author | Barton, MD | en_US |
dc.contributor.author | Lingner, T | en_US |
dc.contributor.author | Lin, HH | en_US |
dc.contributor.author | Liao, YC | en_US |
dc.contributor.author | Silva, GGZ | en_US |
dc.contributor.author | Cuevas, DA | en_US |
dc.contributor.author | Edwards, RA | en_US |
dc.contributor.author | Saha, S | en_US |
dc.contributor.author | Piro, VC | en_US |
dc.contributor.author | Renard, BY | en_US |
dc.contributor.author | Pop, M | en_US |
dc.contributor.author | Klenk, HP | en_US |
dc.contributor.author | Göker, M | en_US |
dc.contributor.author | Kyrpides, NC | en_US |
dc.contributor.author | Woyke, T | en_US |
dc.contributor.author | Vorholt, JA | en_US |
dc.contributor.author | Schulze-Lefert, P | en_US |
dc.contributor.author | Rubin, EM | en_US |
dc.contributor.author |
Darling, AE |
en_US |
dc.contributor.author | Rattei, T | en_US |
dc.contributor.author | McHardy, AC | en_US |
dc.date.available | 2017-08-25 | en_US |
dc.date.issued | 2017-10-31 | en_US |
dc.identifier.citation | Nature Methods, 2017, 14 (11), pp. 1063 - 1071 | en_US |
dc.identifier.issn | 1548-7091 | en_US |
dc.identifier.uri | http://hdl.handle.net/10453/124093 | |
dc.description.abstract | Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions. | en_US |
dc.relation | http://purl.org/au-research/grants/arc/LP150100912 | |
dc.relation.ispartof | Nature Methods | en_US |
dc.relation.isbasedon | 10.1038/nmeth.4458 | en_US |
dc.subject.classification | Developmental Biology | en_US |
dc.subject.mesh | Sequence Analysis, DNA | en_US |
dc.subject.mesh | Algorithms | en_US |
dc.subject.mesh | Software | en_US |
dc.subject.mesh | Benchmarking | en_US |
dc.subject.mesh | Metagenomics | en_US |
dc.title | Critical Assessment of Metagenome Interpretation - A benchmark of metagenomics software | en_US |
dc.type | Journal Article | |
utslib.citation.volume | 11 | en_US |
utslib.citation.volume | 14 | en_US |
utslib.for | 0604 Genetics | en_US |
utslib.for | 1004 Medical Biotechnology | en_US |
utslib.for | 1101 Medical Biochemistry and Metabolomics | en_US |
utslib.for | 06 Biological Sciences | en_US |
utslib.for | 10 Technology | en_US |
utslib.for | 11 Medical and Health Sciences | en_US |
pubs.embargo.period | Not known | en_US |
pubs.organisational-group | /University of Technology Sydney | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Science | |
pubs.organisational-group | /University of Technology Sydney/Strength - ithree - Institute of Infection, Immunity and Innovation | |
utslib.copyright.status | open_access | |
pubs.issue | 11 | en_US |
pubs.publication-status | Published | en_US |
pubs.volume | 14 | en_US |
Abstract:
Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph