Water resources and water use efficiency in the North China Plain: Current status and agronomic management options

Publication Type:
Journal Article
Citation:
Agricultural Water Management, 2010, 97 (8), pp. 1102 - 1116
Issue Date:
2010-08-01
Filename Description Size
Thumbnail2009008506OK.pdf731.82 kB
Adobe PDF
Full metadata record
Serious water deficits and deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, identifies the effects of soil management, irrigation timing and amounts, and crop genetic improvement on water use efficiency (WUE), and then discusses knowledge gaps and research priorities to further improve WUE. Enhanced irrigation and soil nutrient (mainly nitrogen) management are the focal issues in the NCP for enhancing WUE, which are shown to increase WUE by 10-25% in a wheat-maize double cropping system. Crop breeding has also contributed to increased of WUE and is expected to play an important role in the future as genetic and environmental interactions are understood better. Agricultural system models and remote sensing have been used to evaluate and improve current agronomic management practices for increasing WUE at field and regional scales. The low WUE in farmer's fields compared with well-managed experimental sites indicates that more efforts are needed to transfer water-saving technologies to the farmers. We also identified several knowledge gaps for further increasing WUE in the NCP by: (1) increasing scientific understanding of the effects of agronomic management on WUE across various soil and climate conditions; (2) quantifying the interaction between soil water and nitrogen in water-limited agriculture for improving both water and nitrogen-use efficiency; (3) improving irrigation practices (timing and amounts) based on real-time monitoring of water status in soil-crop systems; and (4) maximizing regional WUE by managing water resources and allocation at regional scales. © 2010 Elsevier B.V.
Please use this identifier to cite or link to this item: