MXene (Ti <inf>3</inf> C <inf>2</inf> ) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO <inf>2</inf>

Publication Type:
Journal Article
Citation:
Journal of the American Chemical Society, 2019, 141 (9), pp. 4086 - 4093
Issue Date:
2019-03-06
Filename Description Size
jacs.8b13579.pdfPublished Version5.36 MB
Adobe PDF
Full metadata record
© Copyright 2019 American Chemical Society. A central topic in single-atom catalysis is building strong interactions between single atoms and the support for stabilization. Herein we report the preparation of stabilized single-atom catalysts via a simultaneous self-reduction stabilization process at room temperature using ultrathin two-dimensional Ti 3-x C 2 T y MXene nanosheets characterized by abundant Ti-deficit vacancy defects and a high reducing capability. The single atoms therein form strong metal-carbon bonds with the Ti 3-x C 2 T y support and are therefore stabilized onto the sites previously occupied by Ti. Pt-based single-atom catalyst (SAC) Pt 1 /Ti 3-x C 2 T y offers a green route to utilizing greenhouse gas CO 2 , via the formylation of amines, as a C 1 source in organic synthesis. DFT calculations reveal that, compared to Pt nanoparticles, the single Pt atoms on Ti 3-x C 2 T y support feature partial positive charges and atomic dispersion, which helps to significantly decrease the adsorption energy and activation energy of silane, CO 2 , and aniline, thereby boosting catalytic performance. We believe that these results would open up new opportunities for the fabrication of SACs and the applications of MXenes in organic synthesis.
Please use this identifier to cite or link to this item: