Induced and logarithmic distances with multi-region aggregation operators
- Publication Type:
- Journal Article
- Citation:
- Technological and Economic Development of Economy, 2019, 25 (4), pp. 664 - 692
- Issue Date:
- 2019-01-01
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Copyright © 2019 The Author(s). Published by VGTU Press. This paper introduces the induced ordered weighted logarithmic averaging IOWLAD and multiregion induced ordered weighted logarithmic averaging MR-IOWLAD operators. The distinctive characteristic of these operators lies in the notion of distance measures combined with the complex reordering mechanism of inducing variables and the properties of the logarithmic averaging operators. The main advantage of MR-IOWLAD operators is their design, which is specifically thought to aid in decision-making when a set of diverse regions with different properties must be considered. Moreover, the induced weighting vector and the distance measure mechanisms of the operator allow for the wider modeling of problems, including heterogeneous information and the complex attitudinal character of experts, when aiming for an ideal scenario. Along with analyzing the main properties of the IOWLAD operators, their families and specific cases, we also introduce some extensions, such as the induced generalized ordered weighted averaging IGOWLAD operator and Choquet integrals. We present the induced Choquet logarithmic distance averaging ICLD operator and the generalized induced Choquet logarithmic distance averaging IGCLD operator. Finally, an illustrative example is proposed, including real-world information retrieved from the United Nations World Statistics for global regions.
Please use this identifier to cite or link to this item: