A Practical Blockchain Framework using Image Hashing for Image Authentication

Publication Type:
Journal Article
Filename Description Size
2004.06860v1.pdf2.26 MB
Adobe PDF
Full metadata record
Blockchain is a relatively new technology that can be seen as a decentralised database. Blockchain systems heavily rely on cryptographic hash functions to store their data, which makes it difficult to tamper with any data stored in the system. A topic that was researched along with blockchain is image authentication. Image authentication focuses on investigating and maintaining the integrity of images. As a blockchain system can be useful for maintaining data integrity, image authentication has the potential to be enhanced by blockchain. There are many techniques that can be used to authenticate images; the technique investigated by this work is image hashing. Image hashing is a technique used to calculate how similar two different images are. This is done by converting the images into hashes and then comparing them using a distance formula. To investigate the topic, an experiment involving a simulated blockchain was created. The blockchain acted as a database for images. This blockchain was made up of devices which contained their own unique image hashing algorithms. The blockchain was tested by creating modified copies of the images contained in the database, and then submitting them to the blockchain to see if it will return the original image. Through this experiment it was discovered that it is plausible to create an image authentication system using blockchain and image hashing. However, the design proposed by this work requires refinement, as it appears to struggle in some situations. This work shows that blockchain can be a suitable approach for authenticating images, particularly via image hashing. Other observations include that using multiple image hash algorithms at the same time can increase performance in some cases, as well as that each type of test done to the blockchain has its own unique pattern to its data.
Please use this identifier to cite or link to this item: