Experimental and numerical analysis of 3D printed cement mortar specimens using inkjet 3DP

Publisher:
Springer Science and Business Media LLC
Publication Type:
Journal Article
Citation:
Archives of Civil and Mechanical Engineering, 2021, 21, (2), pp. 58
Issue Date:
2021-03-24
Filename Description Size
manuscript_final20FEB2021.pdfAccepted Manuscript3.02 MB
Adobe PDF
Full metadata record
Investigations involving the experimental and numerical analysis of inkjet (powder-based) 3DP are relatively limited for cement mortar materials. This study, by using cement mortar specimens, aimed to determine the optimum strength of 3D printed structural members in all three planes by identifying the compressive strength of cubes, the modulus of elasticity and Poisson’s ratio. In addition, this study aimed to analyse and verify the numerical model for 3D printed cementitious mortar (CP) prisms and beams using an inkjet 3D printer by considering the mechanical behaviour of the printed prisms under compression. Robust and optimal mechanical properties of the 3D printed cementitious mortar obtained from laboratory testing were utilised in the simulation of structural components using ABAQUS software. As inputs for simulation, the strength properties of the printed objects in all three cartesian planes were obtained from test results. The obtained results showed that the printed cementitious materials have orthotropic properties and that the results of experiments were consistent with the analytical solutions and hypothesised model for the different geometric shapes. This finding is extremely valuable in determining the optimum features of 3D printed structures.
Please use this identifier to cite or link to this item: