Complementary Attributes: A New Clue to Zero-Shot Learning.
- Publisher:
- IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
- Publication Type:
- Journal Article
- Citation:
- IEEE transactions on cybernetics, 2021, 51, (3), pp. 1519-1530
- Issue Date:
- 2021-03-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
Complementary_Attributes_A_New_Clue_to_Zero-Shot_Learning.pdf | Published version | 4.01 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Zero-shot learning (ZSL) aims to recognize unseen objects using disjoint seen objects via sharing attributes. The generalization performance of ZSL is governed by the attributes, which transfer semantic information from seen classes to unseen classes. To take full advantage of the knowledge transferred by attributes, in this paper, we introduce the notion of the complementary attributes (CAs), as a supplement to the original attributes, to enhance the semantic representation ability. Theoretical analyses demonstrate that CAs can improve the PAC-style generalization bound of the original ZSL model. Since the proposed CA focuses on enhancing the semantic representation, CA can be easily applied to any existing attribute-based ZSL methods, including the label-embedding strategy-based ZSL (LEZSL) and the probability-prediction strategy-based ZSL (PPZSL). In PPZSL, there is a strong assumption that all attributes are independent of each other, which is arguably unrealistic in practice. To solve this problem, a novel rank aggregation (RA) framework is proposed to circumvent the assumption. Extensive experiments on five ZSL benchmark datasets and the large-scale ImageNet dataset demonstrate that the proposed CA and RA can significantly and robustly improve the existing ZSL methods and achieve state-of-the-art performance.
Please use this identifier to cite or link to this item: