Use of recycled tyre segments to enhance the stability of ballasted track by increased confinement

Publisher:
Canadian Science Publishing
Publication Type:
Journal Article
Citation:
Canadian Geotechnical Journal, 0, (ja)
Full metadata record
The most common railway ballast is produced by quarrying, and its mechanical characteristics are crucial for both stability and drainage for safer and faster rail operations. Ballasted tracks have certain drawbacks, primarily because ballast starts to degrade over time. In this regard, reducing the rate of ballast degradation is vital to enhance track longevity and minimise maintenance costs. This paper demonstrates how segments of waste rubber tyres (e.g. 3m in diameter) from the mining industry can improve stability of tracks, while contributing to reduced ballast deformation and degradation. By placing arched segments along the track shoulders beyond the edge of sleepers, the in-situ lateral confining pressure can be increased from 20-25 kPa (standard track) to 40-50 kPa. This novel idea of Confined-Caterpillar Track (CCT) was tested at a prototype physical model (1:1 scale) at the National Facility for the Heavy-haul Railroad Testing (NFHRT), and the experimental outcomes compared to the performance of a conventional track. Apart from constributing to at least 25% saving of quarried aggregates, the test results prove that the CCT concept can curtail the lateral displacement and settlement of the ballast layer, while reducing particle breakage and effecting significant stress reduction in the underlying substructure layers.
Please use this identifier to cite or link to this item: