Effect of hydraulic regime on sulfur-packed bed performance: Denitrification and disproportionation.

Publisher:
ACADEMIC PRESS INC ELSEVIER SCIENCE
Publication Type:
Journal Article
Citation:
Environ Res, 2023, 238, (Pt 2), pp. 117213
Issue Date:
2023-12-01
Full metadata record
Sulfur-packed beds (SPBs) have been increasingly incorporated into constructed wetland systems to overcome limitations in achieving satisfactory nitrate removal efficiency. However, the underlying impact of hydraulic regimes on SPB performance remains understudied. This study investigated the performance of a pilot-scale SPB, encompassing sulfur autotrophic denitrification (SAD) and sulfur disproportionation (SDP) processes, under various horizontal flow (HF) and vertical flow (VF) regimes. The HF regime exhibited superior SAD efficiency, achieving 3.1-4.4 mg-N/L of nitrate removal compared to 0.9-2.8 mg-N/L under VF regimes. However, greater sulfide production of 3.8-5.6 mg/L was observed, in contrast to only 1.5-2.3 mg/L under VF regimes when SDP occurred. Employing current computational fluid dynamics simulations could predict general regimes but lacked precision in detailing sulfur layer dynamics. In contrast, determining the spatial distribution of SAD substrates and SDP products offered a viable solution, revealing stagnate, short-circuit, and back flows. Moreover, the feasibility of an aeration approach to reduce sulfide emissions below 0.5 mg/L in case of accidental SDP occurrence was confirmed. This study offers a method for assessing detailed hydraulic regimes within SPBs. Additionally, it provides guidance on optimizing the packing of sulfur-based materials when implementing SPBs in constructed wetland systems and presents a strategy for mitigating excessive sulfide emissions.
Please use this identifier to cite or link to this item: