Attribute-Based Membership Inference Attacks and Defenses on GANs

Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Publication Type:
Journal Article
Citation:
IEEE Transactions on Dependable and Secure Computing, 2023, PP, (99), pp. 1-18
Issue Date:
2023-01-01
Filename Description Size
Attribute-Based_Membership_Inference_Attacks_and_Defenses_on_GANs.pdfAccepted version3.03 MB
Adobe PDF
Full metadata record
With breakthroughs in high-resolution image generation, applications for disentangled generative adversarial networks (GANs) have attracted much attention. At the same time, the privacy issues associated with GAN models have been raising many concerns. Membership inference attacks (MIAs), where an adversary attempts to determine whether or not a sample has been used to train the victim model, are a major risk with GANs. In prior research, scholars have shown that successful MIAs can be mounted by leveraging overfit images. However, high-resolution images make the existing MIAs fail due to their complexity. And the nature of disentangled GANs is such that the attributes are overfitting, which means that, for an MIA to be successful, it must likely be based on overfitting attributes. Furthermore, given the empirical difficulties with obtaining independent and identically distributed (IID) candidate samples, choosing the non-trivial attributes of candidate samples as the target for exploring overfitting would be a more preferable choice. Hence, in this paper, we propose a series of attribute-based MIAs that considers both black-box and white-box settings. The attacks are performed on the generator, and the inferences are derived by overfitting the non-trivial attributes. Additionally, we put forward a novel perspective on model generalization and a possible defense by evaluating the overfitting status of each individual attribute. A series of empirical evaluations in both settings demonstrate that the attacks remain stable and successful when using non-IID candidate samples. Further experiments illustrate that each attribute exhibits a distinct overfitting status. Moreover, manually generalizing highly overfitting attributes significantly reduces the risk of privacy leaks.
Please use this identifier to cite or link to this item: