Metal-Free 2D/2D van der Waals Heterojunction Based on Covalent Organic Frameworks for Highly Efficient Solar Energy Catalysis.
- Publisher:
- SHANGHAI JIAO TONG UNIV PRESS
- Publication Type:
- Journal Article
- Citation:
- Nanomicro Lett, 2023, 15, (1), pp. 132
- Issue Date:
- 2023-05-22
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Covalent organic frameworks (COFs) have emerged as a kind of rising star materials in photocatalysis. However, their photocatalytic activities are restricted by the high photogenerated electron-hole pairs recombination rate. Herein, a novel metal-free 2D/2D van der Waals heterojunction, composed of a two-dimensional (2D) COF with ketoenamine linkage (TpPa-1-COF) and 2D defective hexagonal boron nitride (h-BN), is successfully constructed through in situ solvothermal method. Benefitting from the presence of VDW heterojunction, larger contact area and intimate electronic coupling can be formed between the interface of TpPa-1-COF and defective h-BN, which make contributions to promoting charge carriers separation. The introduced defects can also endow the h-BN with porous structure, thus providing more reactive sites. Moreover, the TpPa-1-COF will undergo a structural transformation after being integrated with defective h-BN, which can enlarge the gap between the conduction band position of the h-BN and TpPa-1-COF, and suppress electron backflow, corroborated by experimental and density functional theory calculations results. Accordingly, the resulting porous h-BN/TpPa-1-COF metal-free VDW heterojunction displays outstanding solar energy catalytic activity for water splitting without co-catalysts, and the H2 evolution rate can reach up to 3.15 mmol g-1 h-1, which is about 67 times greater than that of pristine TpPa-1-COF, also surpassing that of state-of-the-art metal-free-based photocatalysts reported to date. In particular, it is the first work for constructing COFs-based heterojunctions with the help of h-BN, which may provide new avenue for designing highly efficient metal-free-based photocatalysts for H2 evolution.
Please use this identifier to cite or link to this item: