Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
- Publisher:
- PERGAMON-ELSEVIER SCIENCE LTD
- Publication Type:
- Journal Article
- Citation:
- Water Res, 2023, 230, pp. 119532
- Issue Date:
- 2023-02-15
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
1-s2.0-S0043135422014774-main.pdf | Published version | 2.32 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Per- and poly-fluoroalkyl substances (PFAS) are recalcitrant, synthetic chemicals that are ubiquitous in the environment because of their widespread use in a variety of consumer and industrial products. PFAS contamination has become an increasing issue in recent years, which needs to be urgently addressed. Foam fractionation is emerging as a potential remediation option that removes PFAS by adsorption to the surface of rising air bubbles which are removed from the system as a foam. PFAS concentrations in the environment are often not sufficient to allow for formation of a foam by itself and often a co-foaming agent is required to be added to enhance the foamability of the solution. In this study, the effect of different classes of co-foaming agents, anionic, non-ionic, zwitterionic and cationic surfactants on the removal of PFAS with varying fluorocarbon chain length from 3 to 8 in a foam fractionation process have been investigated. Evaluation of the air-water interface partitioning coefficient (k') in addition with surface tension and PFAS removal results support the contention that using a co-foaming agent with the opposite charge to the PFAS in question significantly facilitates the adsorption of PFAS to the air-water interface, enhancing the efficiency of the process. Using the non-ionic surfactant (no headgroup electrostatic interaction with PFAS), as a reference, it was observed, in terms of PFAS separation and rate of PFAS removal, that anionic co-surfactant performed worst, zwitterionic was better, and cationic co-surfactant performed best. All of the PFAS species were able to be removed below the limit of detection (0.05 µg/L) after 45 minutes of foaming time with the cationic surfactant.
Please use this identifier to cite or link to this item: