Information Thermodynamics Communications
- Publisher:
- Institute of Electrical and Electronics Engineers (IEEE)
- Publication Type:
- Journal Article
- Citation:
- IEEE WIRELESS COMMUNICATIONS, 2023, 30, (2), pp. 130-137
- Issue Date:
- 2023-04-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
Information_Thermodynamics_Communications.pdf | Published version | 803.44 kB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
The conventional green communication theory meets great challenges to reduce the energy consumption of the sixth generation (6G) communications systems. In this article, information thermodynamics communications are proposed to depict realistic communications systems for which the physical limits on energy and information are taken into consideration. Based on the Carnot heat engine, the relationships of information and energy in communications systems is first clarified by a schematic diagram of non-equilibrium information thermodynamics communications systems. Moreover, a thermodynamic entropy balance architecture is proposed to optimize the energy efficiency of communications systems. Compared with the energy consumption of conventional parity check circuits, simulation results indicate that the energy consumption of parity check circuits adopting the entropy generation minimization mechanism is reduced by up to 93.8 percent. To overcome the enormous energy consumption problem in the next generation wireless communications systems, it is the time to bridge the conversion gap between information and energy from the physical essence.
Please use this identifier to cite or link to this item: