Brain region-specific alterations in gene expression trajectories in the offspring born from influenza A virus infected mice.
Liong, S
Choy, KHC
De Luca, SN
Liong, F
Coward-Smith, M
Oseghale, O
Miles, MA
Vlahos, R
Valant, C
Nithianantharajah, J
Pantelis, C
Christopoulos, A
Selemidis, S
- Publisher:
- Elsevier
- Publication Type:
- Journal Article
- Citation:
- Brain, Behavior, and Immunity, 2024, 120, pp. 488-498
- Issue Date:
- 2024-08
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Liong, S | |
dc.contributor.author | Choy, KHC | |
dc.contributor.author | De Luca, SN | |
dc.contributor.author | Liong, F | |
dc.contributor.author |
Coward-Smith, M |
|
dc.contributor.author | Oseghale, O | |
dc.contributor.author | Miles, MA | |
dc.contributor.author | Vlahos, R | |
dc.contributor.author | Valant, C | |
dc.contributor.author | Nithianantharajah, J | |
dc.contributor.author | Pantelis, C | |
dc.contributor.author | Christopoulos, A | |
dc.contributor.author | Selemidis, S | |
dc.date.accessioned | 2025-02-12T21:57:29Z | |
dc.date.available | 2024-06-23 | |
dc.date.available | 2025-02-12T21:57:29Z | |
dc.date.issued | 2024-08 | |
dc.identifier.citation | Brain, Behavior, and Immunity, 2024, 120, pp. 488-498 | |
dc.identifier.issn | 0889-1591 | |
dc.identifier.issn | 1090-2139 | |
dc.identifier.uri | http://hdl.handle.net/10453/185076 | |
dc.description.abstract | Influenza A virus (IAV) infection during pregnancy can increase the risk for neurodevelopmental disorders in the offspring, however, the underlying neurobiological mechanisms are largely unknown. To recapitulate viral infection, preclinical studies have traditionally focused on using synthetic viral mimetics, rather than live IAV, to examine consequences of maternal immune activation (MIA)-dependent processes on offspring. In contrast, few studies have used live IAV to assess effects on global gene expression, and none to date have addressed whether moderate IAV, mimicking seasonal influenza disease, alters normal gene expression trajectories in different brain regions across different stages of development. Herein, we show that moderate IAV infection during pregnancy, which causes mild maternal disease and no overt foetal complications in utero, induces lasting effects on the offspring into adulthood. We observed behavioural changes in adult offspring, including disrupted prepulse inhibition, dopaminergic hyper-responsiveness, and spatial recognition memory deficits. Gene profiling in the offspring brain from neonate to adolescence revealed persistent alterations to normal gene expression trajectories in the prefronal cortex, hippocampus, hypothalamus and cerebellum. Alterations were found in genes involved in inflammation and neurogenesis, which were predominately dysregulated in neonatal and early adolescent offspring. Notably, late adolescent offspring born from IAV infected mice displayed altered microglial morphology in the hippocampus. In conclusion, we show that moderate IAV during pregnancy perturbs neurodevelopmental trajectories in the offspring, including alterations in the neuroinflammatory gene expression profile and microglial number and morphology in the hippocampus, resulting in behavioural changes in adult offspring. Such early perturbations may underlie the vulnerability in human offspring for the later development of neurodevelopmental disorders, including schizophrenia. Our work highlights the importance of using live IAV in developing novel preclinical models that better recapitulate the real-world impact of inflammatory insults during pregnancy on offspring neurodevelopmental trajectories and disease susceptibility later in life. | |
dc.format | Print-Electronic | |
dc.language | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Brain, Behavior, and Immunity | |
dc.relation.isbasedon | 10.1016/j.bbi.2024.06.025 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | 1107 Immunology, 1109 Neurosciences, 1701 Psychology | |
dc.subject.classification | Neurology & Neurosurgery | |
dc.subject.classification | 3204 Immunology | |
dc.subject.classification | 3209 Neurosciences | |
dc.subject.classification | 5202 Biological psychology | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Brain | |
dc.subject.mesh | Disease Models, Animal | |
dc.subject.mesh | Female | |
dc.subject.mesh | Gene Expression | |
dc.subject.mesh | Hippocampus | |
dc.subject.mesh | Influenza A virus | |
dc.subject.mesh | Male | |
dc.subject.mesh | Mice | |
dc.subject.mesh | Mice, Inbred C57BL | |
dc.subject.mesh | Neurodevelopmental Disorders | |
dc.subject.mesh | Orthomyxoviridae Infections | |
dc.subject.mesh | Pregnancy | |
dc.subject.mesh | Pregnancy Complications, Infectious | |
dc.subject.mesh | Prenatal Exposure Delayed Effects | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Female | |
dc.subject.mesh | Pregnancy | |
dc.subject.mesh | Mice | |
dc.subject.mesh | Brain | |
dc.subject.mesh | Prenatal Exposure Delayed Effects | |
dc.subject.mesh | Orthomyxoviridae Infections | |
dc.subject.mesh | Influenza A virus | |
dc.subject.mesh | Pregnancy Complications, Infectious | |
dc.subject.mesh | Male | |
dc.subject.mesh | Mice, Inbred C57BL | |
dc.subject.mesh | Hippocampus | |
dc.subject.mesh | Neurodevelopmental Disorders | |
dc.subject.mesh | Gene Expression | |
dc.subject.mesh | Disease Models, Animal | |
dc.subject.mesh | Brain | |
dc.subject.mesh | Hippocampus | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Mice, Inbred C57BL | |
dc.subject.mesh | Mice | |
dc.subject.mesh | Influenza A virus | |
dc.subject.mesh | Pregnancy Complications, Infectious | |
dc.subject.mesh | Orthomyxoviridae Infections | |
dc.subject.mesh | Prenatal Exposure Delayed Effects | |
dc.subject.mesh | Disease Models, Animal | |
dc.subject.mesh | Gene Expression | |
dc.subject.mesh | Pregnancy | |
dc.subject.mesh | Female | |
dc.subject.mesh | Male | |
dc.subject.mesh | Neurodevelopmental Disorders | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Female | |
dc.subject.mesh | Pregnancy | |
dc.subject.mesh | Mice | |
dc.subject.mesh | Brain | |
dc.subject.mesh | Prenatal Exposure Delayed Effects | |
dc.subject.mesh | Orthomyxoviridae Infections | |
dc.subject.mesh | Influenza A virus | |
dc.subject.mesh | Pregnancy Complications, Infectious | |
dc.subject.mesh | Male | |
dc.subject.mesh | Mice, Inbred C57BL | |
dc.subject.mesh | Hippocampus | |
dc.subject.mesh | Neurodevelopmental Disorders | |
dc.subject.mesh | Gene Expression | |
dc.subject.mesh | Disease Models, Animal | |
dc.title | Brain region-specific alterations in gene expression trajectories in the offspring born from influenza A virus infected mice. | |
dc.type | Journal Article | |
utslib.citation.volume | 120 | |
utslib.location.activity | Netherlands | |
utslib.for | 1107 Immunology | |
utslib.for | 1109 Neurosciences | |
utslib.for | 1701 Psychology | |
pubs.organisational-group | University of Technology Sydney | |
pubs.organisational-group | University of Technology Sydney/Faculty of Science | |
pubs.organisational-group | University of Technology Sydney/Faculty of Science/School of Life Sciences | |
utslib.copyright.status | open_access | * |
pubs.consider-herdc | false | |
dc.rights.license | This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ | |
dc.date.updated | 2025-02-12T21:57:27Z | |
pubs.publication-status | Published | |
pubs.volume | 120 |
Abstract:
Influenza A virus (IAV) infection during pregnancy can increase the risk for neurodevelopmental disorders in the offspring, however, the underlying neurobiological mechanisms are largely unknown. To recapitulate viral infection, preclinical studies have traditionally focused on using synthetic viral mimetics, rather than live IAV, to examine consequences of maternal immune activation (MIA)-dependent processes on offspring. In contrast, few studies have used live IAV to assess effects on global gene expression, and none to date have addressed whether moderate IAV, mimicking seasonal influenza disease, alters normal gene expression trajectories in different brain regions across different stages of development. Herein, we show that moderate IAV infection during pregnancy, which causes mild maternal disease and no overt foetal complications in utero, induces lasting effects on the offspring into adulthood. We observed behavioural changes in adult offspring, including disrupted prepulse inhibition, dopaminergic hyper-responsiveness, and spatial recognition memory deficits. Gene profiling in the offspring brain from neonate to adolescence revealed persistent alterations to normal gene expression trajectories in the prefronal cortex, hippocampus, hypothalamus and cerebellum. Alterations were found in genes involved in inflammation and neurogenesis, which were predominately dysregulated in neonatal and early adolescent offspring. Notably, late adolescent offspring born from IAV infected mice displayed altered microglial morphology in the hippocampus. In conclusion, we show that moderate IAV during pregnancy perturbs neurodevelopmental trajectories in the offspring, including alterations in the neuroinflammatory gene expression profile and microglial number and morphology in the hippocampus, resulting in behavioural changes in adult offspring. Such early perturbations may underlie the vulnerability in human offspring for the later development of neurodevelopmental disorders, including schizophrenia. Our work highlights the importance of using live IAV in developing novel preclinical models that better recapitulate the real-world impact of inflammatory insults during pregnancy on offspring neurodevelopmental trajectories and disease susceptibility later in life.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph