Constitutive Behaviour of Recycled Rubber-Involved Mixtures for Transportation Infrastructure

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Sustainability (Switzerland), 2025, 17, (9)
Issue Date:
2025-05-01
Full metadata record
The scarcity of natural aggregates and the growing accumulation of waste materials have driven the demand for sustainable and circular economy solutions in transportation infrastructure, and this has led to the utilization of waste materials in transport infrastructure, such as recycled rubber. Although numerous laboratory experiments have been conducted on granular mixtures mixed with rubber, predicting the complex stress–strain behaviour of these mixtures mathematically and capturing the influence of rubber on the geotechnical properties of waste mixtures are imperative. This paper presents a comprehensive review of the constitutive models developed to predict the stress–strain behaviour, dilatancy, and shear strength of rubber-mixed waste materials, including sand–rubber, coal wash–steel furnace slag–rubber crumbs, and coal wash–rubber crumbs in various transport infrastructure applications under static loading. This paper also highlights the innovations and limitations of these existing constitutive models on rubber-mixed materials. It was found that existing constitutive models based on hyperbolic, hypoplastic, critical state, and bounding surface plasticity approaches can capture the behaviour of these materials under static loading conditions. However, further developments are required to incorporate the influence of the type and size of the rubber, particle breakage, and damping properties and also account for train-induced cyclic loading in models developed for railway substructures. This paper contributes to advancing future research aimed at deepening the fundamental understanding of rubber-mixed materials used in transportation infrastructure.
Please use this identifier to cite or link to this item: