Mean field variational Bayesian inference for nonparametric regression with measurement error
- Publication Type:
- Journal Article
- Citation:
- Computational Statistics and Data Analysis, 2013, 68 pp. 375 - 387
- Issue Date:
- 2013-08-26
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
2012007977OK.pdf | 2.12 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
A fast mean field variational Bayes (MFVB) approach to nonparametric regression when the predictors are subject to classical measurement error is investigated. It is shown that the use of such technology to the measurement error setting achieves reasonable accuracy. In tandem with the methodological development, a customized Markov chain Monte Carlo method is developed to facilitate the evaluation of accuracy of the MFVB method. © 2013 Published by Elsevier B.V. All rights reserved.
Please use this identifier to cite or link to this item: