Effect of sphingosine 1-phosphate on cyclo-oxygenase-2 expression, prostaglandin E<inf>2</inf> secretion, and β<inf>2</inf>-adrenergic receptor desensitization

Publication Type:
Journal Article
Citation:
American Journal of Respiratory Cell and Molecular Biology, 2016, 54 (1), pp. 128 - 135
Issue Date:
2016-01-01
Full metadata record
Copyright © 2016 by the American Thoracic Society. Tachyphylaxis of the β2-adrenergic receptor limits the efficacy of bronchodilatory β2-agonists in respiratory disease. Cellular studies in airway smooth muscle (ASM) have shown that inflammatory mediators and infectious stimuli reduce β2-adrenergic responsiveness in a cyclo-oxygenase (COX)-2-mediated, prostaglandin E2 (PGE2)-dependant manner. Herein, we show that sphingosine 1-phosphate (S1P), abioactive sphingolipid thatplays an important role in pathophysiology of asthma, also induces β2-adrenergic receptor desensitization in bronchial ASM cells and exerts hyporesponsiveness to β2-agonists. We treated ASM cells with S1P (1 μM) for up to 24 hours and then examined the temporal kinetics of COX-2 mRNA expression, protein up-regulation, and PGE2 secretion. S1P significantly enhanced COX-2 expression and PGE2 secretion, and this was repressed by the selective COX-2 inhibitor celecoxib, the corticosteroid dexamethasone, or small interfering RNA (siRNA) knockdown of COX-2 expression. In combination with another proinflammatory mediator found elevated in asthmatic airways, the cytokine TNF-α, we observed that S1P-induced COX-2 mRNA expression and protein up-regulation and PGE2 secretion from ASM cells were significantly enhanced. Notably, S1P induced heterologous β2-adrenergic desensitization, as measured by inhibition of cyclic adenosine monophosphate production in response to the short-acting β2-agonist, salbutamol, and the long-acting β2-agonist, formoterol. Taken together, these data indicate that S1P represses β2-adrenergic activity in ASM cells by increasing COX-2-mediated PGE2 production, and suggest that this bioactive sphingolipid found elevated in asthma may contribute to β2-adrenergic desensitization.
Please use this identifier to cite or link to this item: