Machine Learning-Based Forecasting Active Power Loss in Distribution Systems

Publisher:
EDP Sciences
Publication Type:
Journal Article
Citation:
E3S Web of Conferences, 2025, 626, pp. 04003
Issue Date:
2025
Full metadata record
This paper presents an ensemble learning approach to predict the active power losses during the allocation and sizing of distributed generation (DG) units in power distribution networks. The forecast model incorporates the Gradient Boosting Machine Regression (GBMR) to estimate DG location, bus voltages, DG size, and active losses without conventional power flow calculations. The results demonstrate that the suggested estimations of power losses and DG sizing are effective, practical, and adaptable for power system management. The accuracy of the proposed model has been validated using key performance metrics and tested on the standard IEEE 33 bus system. In the case of fixed load, the GBMR outperforms other machine learning techniques with the R-squared 0.9997, with a very low mean absolute percentage error (MAPE) (0.2216%) and a root mean square error (RMSE) of 1.0673 in predicting active power losses. This approach is promising in enabling grid operators to effectively manage DG unit integration of distributed energy resources from precise and reliable estimates of the power loss.
Please use this identifier to cite or link to this item: