Superharmonic numbers

Publication Type:
Journal Article
Citation:
Mathematics of Computation, 2009, 78 (265), pp. 421 - 429
Issue Date:
2009-01-12
Full metadata record
Let τ(n) denote the number of positive divisors of a natural number n > 1 and let σ(n) denote their sum. Then n is superharmonic if σ(n) | nκτ(n) for some positive integer κ. We deduce numerous properties of superharmonic numbers and show in particular that the set of all superharmonic numbers is the first nontrivial example that has been given of an infinite set that contains all perfect numbers but for which it is difficult to determine whether there is an odd member. © 2008 American Mathematical Society.
Please use this identifier to cite or link to this item: