A progressive hedging approach for large-scale pavement maintenance scheduling under uncertainty
- Publisher:
- Routledge
- Publication Type:
- Journal Article
- Citation:
- The International Journal of Pavement Engineering, 2021
- Issue Date:
- 2021
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
This study approaches a multi-stage stochastic mixed-integer programming model for the high-level complexity of large-scale pavement maintenance scheduling problems. The substance of some parameters in the mentioned problems is uncertain. Ignoring the uncertainty of these parameters in the pavement maintenance scheduling problems may lead to suboptimal solutions and unstable pavement conditions. In this study, annual budget and pavement deterioration rate are considered uncertain parameters. On the other hand, pavement agencies generally face large-scale pavement networks. The complexity of the proposed stochastic model increases exponentially with the number of network sections and scenarios. The problem is solved using the Progressive Hedging Algorithm (PHA), which is suitable for large-scale stochastic programming problems, by achieving an effective decomposition over scenarios. A modified adaptive strategy for choosing the penalty parameter value is applied that aims to improve the solution process. A pavement network including 251 sections is considered the case study for this investigation, and the current study seeks optimal maintenance scheduling over a finite analysis period. The performance of the stochastic model is compared with that of the deterministic model. The results indicate that the introduced approach is competent to address uncertainty in maintenance and rehabilitation problems.
Please use this identifier to cite or link to this item: